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Syllabus Information 

Quantum Mechanics - 60959 - PH 2210 - 0 

Associated Term: 2012/13 Academic Session  

 
Royal Holloway Campus 

Standard Schedule Type 

Traditional Instructional Method 
 

Learning Objectives: Aims: To study in depth the use of Schrodinger's equation 

to solve problems involving the motion of a particle in a potential in one and 

three dimensions. To demonstrate how the solution predicts quantization of the 
energy of the particle and the need to introduce other quantum numbers to 

describe its behaviour. To demonstrate the solution to Schrodinger's equation for 

the hydrogen atom and to provide a simple understanding of the periodic table. 
To introduce the concept of mixed states. Learning Outcomes: By the end of the 

course students should be able to demonstrate a sound understanding of the use 

of Schrodinger's equation. They should be able to solve the equation for a 
number of simple potentials including the square well, the simple harmonic 

oscillator and the hydrogen atom. For each of these they should be able to 

sketch the potential, the energy level diagram and typical wave functions. They 

should be able to provide the definition of terms such as normalization and 
parity of wave functions, and degeneracy and to explain quantitatively the 

phenomenon of quantum mechanical tunnelling. Course Content: Review of the 

failure of classical physics and the introduction of quantum ideas; the 
uncertainty principle. Schrodinger's equation; the wave function and its 

interpretation. Operators, eigenvalues, eigenfunctions, expectation values; 

commutation relations, non-commutation. Applications of Schrodinger's equation 
in one-dimension: free particle, square well, harmonic oscillator; potential step, 

barrier and tunnelling (including alpha decay). Applications of Schrodinger's 

equation in three dimensions: particles in a rectilinear box, angular momentum, 

the hydrogen atom. The exclusion principle, atomic structure and the periodic 
table. Mixed states, Schrodinger's cat. 

Required Materials: A P French & E F Taylor, An Introduction to Quantum 

Physics, van Nostrand Reinhold, 1978. (530.12.FRE) B H Bransden & C J 
Joachain, Introduction to Quantum Mechanics, Longman, 2nd edition 2000. 

(530.12.BRA) 

Technical Requirements: Teaching & Learning Methods: 22 lectures and 
approximately 10 problem classes Approximately 118 hours private study time, 

to be used for learning the material in detail, answering coursework problems 

and revision. Assessment: Exam: - Two-hour examination - one compulsory 

question + two others to be answered out of four (90%) Coursework: Best five 
of six coursework assignments (10%). Deadlines: Stated with each problem 

sheet and normally about 10 days from the date issued. 

 

  



  DDK: Quantum Mechanics  

 
2 

Problems with Classical physics 

 By the late nineteenth century the laws of physics were based on Mechanics and the law of 
Gravitation from Newton, Maxwell's equations describing Electricity and Magnetism, and on 
Statistical Mechanics describing the state of large collection of matter. These laws of physics 
described nature very well under most conditions, however, some measurements of the late 19th 
and early 20th century could not be understood (we discuss two of the problems below, the third 
one is black body radiation and the “Ultraviolet Catastrophe” which we discussed last year in 
PH1920 with Professor G.Blair).  

Photoelectric Effect 

The Photoelectric effect was first famously explored by Albert Einstein in 1905. It is a low energy 
interaction between matter and radiation.  The experiment conducted was simply shining some 
radiation at a conducting material (preferably one with excess electrons) and observing the electrons 
being emitted. The results were completely counter intuitive (from the point of view of the well-
developed classical theory). The main questions it raised were: 
 

 The electrons were emitted immediately - no time lag! 

 Increasing the intensity of the light increased the number of photoelectrons, but not their 

maximum kinetic energy! 

 Red light will not cause the ejection of electrons, no matter what the intensity!  

 A weak violet light will eject only a few electrons, but their maximum kinetic energies are 

greater than those for intense light of longer wavelengths![1] 

 
The answers of course led us towards a completely new understanding of physical phenomena 
which was Quantum mechanics. 
 
Compton Scattering 
 
The scattering of photons from charged particles is called Compton scattering after Arthur Compton 
who was the first to measure photon-electron scattering in 1922.  The effect is usually observed by 
scattering X-rays or ϒ-rays or an electron. During the collision, some of the incident photon’s energy 
is imparted to the electron, resulting in a decrease in the scattered photon’s energy and therefore 
an increase in its wavelength. The energy lost by the photon is transferred to the electron in the 
form of recoil kinetic energy (imagine two snooker balls colliding). This is a maximum when the 
photon is scattered straight back (θ=π). By considering energy and momentum conservation before 
and after the collision, we find that the photon energies are related by a simple equation, the 
derivation of this was done by applying special relativity principles.[2]   
 

                            

     
 (      )

  
  

λ’ = Wavelength of photon after scattering  
λ = Wavelength of photon before scattering  
h = Planck constant (6.63 * 10-34 Js) 
θ = Scattering angle 
m = Mass of particle being scattered of (in our case the electron) 
c = Speed of electromagnetic radiation in a vacuum (3*108 ms-1) 
 

 

Figure 1 
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Introduction of Quantum Physics 

Quantum Mechanics incorporates a wave-particle duality and explains all of the above phenomena. 
In doing so, Quantum Mechanics changes our understanding of nature in fundamental ways. While 
the classical laws of physics are deterministic, QM is probabilistic. We can only predict the 
probability that a particle will be found in some region of space. Electromagnetic waves like light are 
made up of particles we call photons. The new idea of Quantum Mechanics is that every particle's 
probability (as a function of position and time) is equal to the square of a probability amplitude 
function and that these probability amplitudes obey a wave equation. This is much like the case in 
electromagnetism where the energy density goes like the square of the field and hence the photon 
probability density goes like the square of the field, yet the field is made up of waves. So probability 
amplitudes are like the fields we know from electromagnetism in many ways. 
 

Einstein, based on Plank's formula, hypothesized that the particles of light had energy proportional 

to their frequency. The equation below solves the problem with the photoelectric effect as we see 

that the energy of the photon is independent of the intensity of the beam and depends only on its 

frequency. This is one of the two main pillars on which the theory of Quantum physics stands.  

                           

     
E = Energy of the particle 
h = Planck constant (6.63*10-34 Js) 
f = Frequency (Hz) 

 

The other being the de Broglie relation in which de Broglie assumed that the laws of special relativity 

would hold in quantum phenomena and therefore would be invariant under the Lorentz 

transformations which led him to develop an equation in 1924 that showed that the momentum and 

wavelength were inversely related to each other (meaning every particle had a wavelength, even 

you and me!). 

                    

      
p = Momentum (kgms-1) 

h = Planck constant (6.63*10-34 Js) 

λ = Wavelength (m) 

 

Three years after de Broglie came up with this theory, Davisson and Germer,  who were two 

American physicists, designed an experiment to test the properties of Nickel by firing electrons at 

Nickel atoms in a vacuum (similar to Geiger and Marsden’s experiment in 1909 which led Rutherford 

to put forward his theory of the atomic structure).  However they accidently led some air into the 

chamber and had to heat it and therefore deformed the structure of the Nickel (full details in the 

paper I have referenced) [3]. The observations they made showed the wave nature of electrons by 

the diffraction pattern (Bragg angle diffraction law applied to particle waves) given, therefore they 

had accidently proven de Broglie’s hypothesis which one him the Nobel prize in 1929! 
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Postulates of Quantum Mechanics 

This is where Quantum mechanics becomes very much like abstract mathematics. Based on a few 

improvable statements (just like axioms in mathematics) we can start doing the mathematics of 

Quantum mechanics which cannot be derived in any way from the principles of classical mechanics. 

Every state of a system at a given time is described by a normalisable wavefunction Ψ(x,t). Ψ 

contains all the physical information about the system. Any (normalisable) wavefunction 

corresponds to a possible state of the system 

Every physical observable is associated with a linear Hermitian operator; the result of a 

measurement is always one of the eigenvalues of the operator. If the operator  ̂ has a discrete 

spectrum of eigenvalues and the corresponding eigenfunctions (in this case the Ψ’s), then using the 

completeness theorem (we have studied this in Mathematics, it comes from the Sturm-Louisville 

theory), the state function Ψ can be expanded in terms of the normalised eigenfunctions. 

             

 ( )   ∑     ( )

 

   

 

               

∑|  | 
 

   

   

If a measurement of A is carried out in this state of the system, the outcome is an with 

probability |  | . 

Immediately after such a measurement, the system is in the state with normalised wavefunction. This 

is known as collapse of the wavefunction (sounds a lot interesting then it really is!, however when 

we think about this, it leads to the so called ‘Many Worlds’ interpretation which opens the door to 

theories involving multiverses etc.[Ḍ]) 

The average value of an observable κ is given by the expectation value. This is obtained by operating 

with the operator 〈 〉 on the wavefunction Ψ(x) and then multiplying by its complex conjugate (we 

are exploiting the orthogonality of the functions here) and integrating with respect to x from    to 

plus  .   

                  

〈 〉   ∑|  |   

 

   

 

The Time Dependent Schrodinger Equation (TDSE) governs how the wavefunction changes with 

time. 
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Wave mechanics and states of systems 

The main difference between classical physics and quantum physics is the logic we use to solve 

classical problems does not work for quantum phenomena. This is not an easy concept to grasp as it 

is completely counter intuitive to what we see around us. However if you think about it, there is no 

reason for classical physical laws to hold be that in the classical world or on quantum scales.  We 

simply develop laws that describe our observations, so maybe we should not be so surprised after all 

(or maybe it has something to do with weather our brain is ‘Quantum’ or ‘Classical’.)[Ḍ] Classically a 

state of a system is deterministic, and can be described as a point in a space of states (this is studied 

by Set theory). However Quantum mechanically, a state is probabilistic and can in a way be seen as a 

vector in a vector space (this is how we expanded the state Ψ(x) in the postulates, the vector space is 

technically called a ‘complex separable Hilbert space’).  This description of a state is radically different from 

classical mechanics as it never tells us exactly where a particle is or how it is moving, it just gives a probability.  

One of the postulates given above says that the state of a system at any given time is given by a 

wavefunction and infact the time evolution can also be a wavefunction as we shall see. We will use 

the solutions of the wave equation as our starting point. 

               

   ̂     
   

   
  

           

 ̂  
 

  
 ̂  

 

  
 ̂  

 

  
 ̂ 

c = Speed of electromagnetic radiation in a vacuum (3*108 ms-1) 
Ψ= wavefunction we are trying to find the solution for 

Solutions to this are of the form (in one dimension) [Derivation 1]: 

             

 (   )     (      ) 
k = Wave vector (   ).  
                         
 

The solutions with a positive wave vector move to the right, the solutions with a negative wave 
vector move to the left. Substituting back into the wave equation we obtain a dispersion relation, 
 ( )    [Derivation 1]. As we can see, this is linear in k, however as we will see this is not the case for 

matter waves (the phase velocity (
 

 
) and group velocity (

  

  
) are not equal).  
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Wave functions 

The state of a system is represented by a complex wavefunction, as shown above, which has no 

physical meaning itself. The wavefunctions used must form a complete set of orthonormal basis 

vectors (discussed in mathematics course) for us to be able to use them. To get some physical 

information from it we take the intensity of the wavefunction (Amplitude squared) as being the 

probability density function for a particle’s position or momentum. Mathematically given by: 

                         

 (   )    (   ) (   )   | (   )|  

Therefore by the rules that govern probability theory we can say that the probability of a particle 

being found in a given interval is given by: 

                                                    

   ∫  | (   )|     
    

 

 

The wavefunctions are restricted to a class of functions that are square integrable, that means they 

are finite when are squared and integrated because if they were not then they would have no 

physical meaning as the probability of the particle being found in a finite region of space being 

infinite would mean it has to be everywhere all the time.  

                       

∫ | (   )|      
 

  

 

We also assume that the wavefunctions are continuous; particles cannot be created or destroyed 

(This assumption only holds in very basic potentials and does not allow for quantum fluctuations[Ḍ]). 

Orthogonality is a very important property of the wavefunction we need as this means they can 

form a complete set of basis vectors. 

                       

∫   
 ( )  ( )       

 

  

 

δnm = Kroneckar delta  

 

A particle in a quantum state can be bound or unbound depending on the energy it has (kinetic) and 
the potential in which it is placed. If the particle has less energy than the potential it is confined in 
(such as a potential well) then it is to be in a bound state. 

 

 

 

 

Figure 2 
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Operators  

Physics is an experimental science, after all the only way to test our theories are by experimenting 

them. In classical physics any observable in an experiment is in general a function of time, which we 

can observe with complete accuracy (however as we will see this is not the  case in quantum 

mechanics, as to make an observation we have to interact with the system itself, usually by hitting it 

with a photon. Classically we can make this photon of negligible energy compared to the system we 

are observing, however on quantum scales, the energy of the photon itself will change the state of 

the system therefore we can never now the state of the system to complete accuracy, unless we find 

some other method of ‘observation’[Ḍ]). In quantum mechanics we cannot observe the state directly 

because as we stated above it is represented by a complex wavefunction, therefore has no physical 

meaning. 

An operator  ̂, is a mathematical object that transforms one function into another (A mathematical 

transformer!). It always acts on the function or list of functions on the right of itself. The product of 

two operators is a third operator and the order of operators is important because in general they are 

not commutive.  All the operators used in quantum mechanics are generally linear and the product 

of operators implies successive operations.  

Properties of Operators 

Linearity   ̂(  ( ))    ̂ ( ) 

Product of operators  ̂ ̂ ( )   ̂( ̂ ( )) 

Product of two operators is a third operator  ̂ ̂ ( )    ̂ ( ) 

Non-commutive behaviour  ̂ ̂ ( )   ̂ ̂ ( )  

Expectation value of operator 
〈 ̂〉   ∫   (   ) ̂

 

  

 (   )   

 

As we postulated previously every observable quantity has a Hermition operator associated with it. I 

will write down the two most important operators as they will be the ones used to derive the 

Schrodinger equation (the derivations will be given in the back).  

                                 

 ̂       ̂ 

               (  )                

 ̂    
 

  
 

                   
 

  
 (             )  

 ̂   
 

  
 

 

  
 

 

  
  

                    ̂ 

∫   ( ) ̂ ( )    ∫ ( ̂
 

  

 ( ))  ( )    
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Schrodinger Equation (1 Dimension) 

We will now use the classical concepts of energy and Hamilton’s equations to derive the equation 

for quantum mechanical motion. For this we will assume that the wave solutions from the wave 

equation are also solutions on the quantum scale if the energy and momentum are given by the 

Einstein and de Broglie relation respectively.   

                       

      

T = Kinetic energy (
  

  
) 

V = Potential energy  

                                              

 ̂    
  

   

  

   
  ̂( ) 

                   
 

  
 (          )  

m = Mass of particle (kg) 

 ̂ = Potential energy operator 

 

The total energy of a quantum mechanical particle is  ̂    ̂.  This is what we will use along with 

the Hamiltonian to derive the Schrodinger equation. 

                                   

( 
  

   

  

   
  ̂( )) (   )    

  (   )

  
 

 

Solutions of the wavefunctions that satisfy the Schrodinger equation determine everything that can 

be known about a given system. Therefore, the Schrodinger equation is a very powerful and elegant 

equation. This is the general Schrodinger equation and is equivalent to Newton’s laws of motion for 

classical physics, as it describes the dynamical behaviour of systems over time. 

This can be separated into a spatial part (Time Independent Schrodinger Equation, TISE) and a time 

evolution equation (by separation of variables, discussed in mathematics). 
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Time Dependent Schrodinger Equation 

 

                                                  

  
  ( )

  
   ( )  

The TDSE is a relatively straight forward 1st order linear differential equation. It does not depend on 

the potential energy function which means that the solution of Ψ(t) is independent of the system 

under consideration. Putting it another way, a wavefunction evolves with the same time 

dependence in any potential.  

                            

 ( )         

 

Where A is a constant set by the boundary conditions of the system and since Ψ (t) is a universal for 

all potentials, then to solve the general Schrodinger equation we solve the TISE and multiply the 

solution by      .   

                        

∫ | ( )|     
 

  

 

 

In general any product solution of the TDSE is a stationary state as the energy will not change in 

time, however a superposition of states will have different energies, therefore the overall state is 

not going to be stationary (yes, that means that the particle will fluctuate by itself in time!). 
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Time Independent Schrodinger Equation  
 

                                                    

( 
  

   

  

   
  ̂( )) ( )    ( )  

 

This is the equation we spend most of our time calculating and trying to understand, the derivations 

are long and mathematically challenging, therefore I will attach the derivations at the back. Here I 

will simply state and discuss the solutions for different potentials and their implications. To solve the 

TISE we need to find a set of boundary conditions to determine the constants obtained by the 

solving the equation.   

 Firstly we insist that the wavefunction Ψ(x) is finite everywhere (we have discussed why this 

is necessary above).  

 The energy and the potential must also be finite everywhere. 

 From the TISE we can see that Ψ(x)’’ must also be finite (as the right hand side of the 

equation will be finite). 

 We can compute all these conditions to find a general constraint on the possible solutions by 

integrating both sides of the TISE as the limits of integration become infitesimally small. This 

leads to the following two conditions: 

 The wavefunction is continuous at any given potential boundary 

 The derivative of the wavefunction is also continuous at any given potential 
boundary 

Before I start to discuss the Schrodinger equation for different potentials I will remind you that the 
force is the negative gradient of the potential. 

      

 ⃡       

   
 

  
 

 

  
 

 

  
  

 

Therefore, a particle in a constant potential well experiences no net force. This is the case for finite 
and infinite potential wells; however the harmonic oscillator potential provides a restoring force 
(according to Hooke’s Law). 

                                    

 ⃡    
  

  
     ⃡ 

k = effective spring constant  

This type of restoring force approximates the force on an atom in a solid that is displaced a small 
distance x from its equilibrium position. Therefore the wave functions that are solutions to Harmonic 
oscillator can represent the quantum states of atoms in a solid. 
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Figure 3[4] 
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Free Particle [Derivation 7] 

A particle moving in space where the potential is zero, V=0. 

The important thing to realise for the particle is that it does not experience any forces and also no 
boundaries, therefore the differential equation can be solved without any boundary conditions. 
The TISE in this case is a simple second order linear differential equation with solutions: 
 

                        

 (   )     (     )     (      ) 

  √        
       
 

We can interpret the plane wave solution as a beam of particles of uniform density. The number of 
particles everywhere is a constant (| | = constant). 

To summarise we can say that for any given energy there are two possible solutions: a plane wave 
moving to the right with amplitude A and a plane wave moving to the left with amplitude B. The 
system is said to be doubly degenerate. Using the momentum operator, we can see that the 
solutions have momentum of  k in the x-direction. 

The wave solutions that we obtain do mean anything physical however can be seen as a flux of 
particles (probability current also means the same thing): 

              ( ( ))               

 ( )  
  

  
( ( )

   ( )

  
   ( )

  ( )

  
) 

h = Planck constant (6.63*10-34 Js) 

m = Mass of the particle (kg) 

Potential step [Derivation 9]  

A beam of particles with energy E moves into a space which has a potential V0. We divide the regions 
into 1 and 2(region 1 has no potential; region 2 has a potential V0). 

               

 ̂( )  {
     
     

 

The particles come from the left; some of them are reflected back into region 1 and some are 
transmitted into region 2.  

The general boundary conditions apply to this situation. We can have two different scenarios here; 
either the energy of the particle is greater than the potential or it can be less. Classically if a particle 
has a greater kinetic energy than the potential it confronts, it will go through that space with 
probability one (Transmission coefficient is 1) and if it has less kinetic energy than the potential, then 
all of the particles would be reflected (Reflection coefficient is 1). The quantum mechanical solutions 
of this problem are: 
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E > V0: 

                       

   (   )     (     )     (      ) 

 
                      

  (   )     (     )
 

 
 
E < V0: 

                       

   (   )     (     )     (      ) 

 
                      

  (   )    (      )
 

  √
  (    )

    

  
 

 
   

  √(
   

  
)     

Infinite Square well [Derivation 10] 

The infinite square potential well is the simplest application of the TISE with a potential and it 
represents the crudest approximation of the potential energy of a particle confined in a region of 
space. In this model, a particle is located in region of zero potential between x = 0 and x = a. At the 
boundaries, there is an infinite increase in the potential energy function.  

               

 ̂( )  {
       
             

 

Note here that we have started the potential well at the origin, we could change the starting point 
and get pretty much the same solutions and most importantly the energy corresponding to the 
quantum states remains the same (of course it would be something odd if the energy of the 
wavefunction depended on what part of space it was in as this would suggest that one part of space 
has different properties to another, which is not something we notice in nature. However it is 
interesting to consider that there is no law that we can state or derive that makes this condition 
necessary[Ḍ]).  We solve the TISE for this potential: 

                       

  (   )  √
 

 
   (

   

 
)      

 

       

   
(
   
 

)
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Similarly we make more general examples of this potential in two and three dimensions and solve 
using separation of variables.  

Finite Square well [Derivation 11] 

The finite square potential well is similar to the infinite potential well mode, with the difference 
being that the potential outside the well is constant instead of being infinite, where V0 is greater 
than E.  

               

 ̂( )  {
        

              
 

From the potential step function above we would expect there to be a finite probability of a particle 
being found in the classical forbidden region of the potential being greater than kinetic energy of the 
particle.  The penetration effects are visible in this region according to an equation. 

                   

  
 

 
   

 

√  (    )
 

Therefore we see that in the limit as V0 goes to  , the penetration length becomes zero, which is in 
agreement with the infinite potential well system. We can solve the TISE to gain the solutions of this 
system in the well region and the region of finite potential (greater than the kinetic energy). What 
will see (in the derivation) is that there are two types of solutions. There are solutions that are 
symmetric (even parity) and ones that are not symmetric (odd parity), this can be seen by defining a 
parity operator and commuting it with the Hamiltonian operator to see that they commute 
therefore they must have the same eigenfunctions (more to be discussed in the derivation). 

Symmetric solutions Asymmetric solutions 

  (      )        (      )      

    (     )            (     )        

   (      )         (      )     
  

  √
   

      

  √
  (     )

    

The energies of the states cannot be calculated analytically therefore they have to be done 
numerically (which I will show in the derivation). 

Finite potential barrier [Derivation 12] 

This is a similar problem to the potential step except that the step has a distance a instead of being 
infinite in length. 

               

 ̂( )  {
        
             

 

The potential energy is greater than the kinetic energy of the particle, therefore we get the 
tunnelling effect that we saw in the potential step, except that this time the particle will have a finite 
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probability of being transmitted (yes, that means it can come out of the other side!) and therefore 
can be observed. Solving the TISE with this potential and the usual boundary conditions we get the 
wavefunctions: 

                                              

  (   )    (     )      (     )         

  (   )                               

  (   )     (     )         

Probably the most important result we obtain here is the transmission coefficient: 

                          

   
       

     (  )   (
 
 

 
 
 
)      (  )   

 

The transmission coefficient squared gives the probability of the particle being found in that region. 
Applications of quantum tunnelling are alpha particle decay, scanning tunnelling microscopes and 
field emissions. 

Quantum Harmonic Oscillator [Derivation 13] 

Here we will use Hooke’s law and assume it holds on quantum scales to give us a potential that we 
can then solve for using the TISE.   

               

 ( )  
 

 
      

 
This can be approximated to many physical systems, in fact any system with an equilibrium position 
will have the form of a harmonic oscillator potential for relatively small displacements from its 
equilibrium position. Solving for this potential is not straight forward due to the x2 dependence. The 
solutions are Gaussian functions with a class a polynomials in front of them, known as Hermite 
polynomials.  

              

  ( )  
  

√    √   
 

 
  

    

   = Hermite polynomials [5] 

n = principle quantum number 
         

(  
 

 
)    

 

It is important to note that all the solutions approach the classical results for very large quantum 
numbers; this is known as Bohr’s correspondence principle. 
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Commutaters and conserved quantities  

Commutation  

In Quantum mechanics we define commutation in a different way to the everyday use of the word. 
This is a very similar concept to the concept of Poisson brackets in classical mechanics (infact they 
are related simply by an  [Ḍ]). It is easiest to show what commutation means mathematically: 

                        

[ ̂  ̂]   ̂  ̂   ̂ ̂ 

The method given above is denoted by the square brackets as shown above (simply called the 
commutators of A with B). It is important to note the order of the operations as I stated previously in 
general the order makes a difference. If a two operators commute then the order does not matter. 
The most important property of two operators commuting is that those operators share common 
eigenfunctions, which means they can be two observable quantities that can be known 
simultaneously.  

Ehrenfest’s theorem    

Another very important property that we can obtain using the commutators is to do with the rate of 
change of the expectation value of any given operator. The Ehrenfest theorem, named after Paul 
Ehrenfest, the Austrian physicist and mathematician, relates the time derivative of the expectation 
value for a quantum mechanical operator to the commutator of that operator with the Hamiltonian 
of the system, the result is closely related to Louisville’s theorem in classical mechanics.  

                                      

 〈 〉

   
 

 

  
〈| ̂  ̂|〉 

 ̂    
  

   

  

     ̂( )  

 

This results shows that any commuting operator with the Hamiltonian is infact a conserved quantity 

as it will not change with time. 
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Figure 4 

Angular Momentum 
 

Angular momentum is a quantity which we have been familiarised with in classical mechanics and 

we also use it often in Quantum mechanics to use the Schrodinger equation in spherical coordinates.  

As we know from classical mechanics there are two forms of angular momentum, orbital and 

rotational. However there is no reason for either of these to be quantities in the quantum world, but 

we know that orbital angular momentum does exist and has been observed. As we will come to see 

that in particles do have a kind of rotational angular momentum (however it is not like the classical 

momentum, as it may or may not have anything to with actual rotation of the particle, like the earth 

spins on its axis) which is known as spin and it is simply an intrinsic property of certain particles.  

 

                                   

 ̂   ̂    ̂ 

Orbital Angular momentum 

 

We can calculate the operator for quantum mechanical orbital angular momentum in the three 

directions (Cartesian coordinates) [Derivation 15] from the classical definition of orbital angular 

momentum. We can also show that this is a conserved quantity by taking the commutator of the 

total angular momentum operator with the Hamiltonian and using Ehrenfest’s theorem. It is 

important to note that the individual components of the angular momentum do not commute with 

each other therefore cannot be determined simultaneously; however the total angular momentum 

commutes with one of the components and hence can be determined simultaneously. The 

eigenfunctions of angular momentum are a class of functions called spherical harmonics (we have 

discussed them in detail in mathematics; therefore I will not spend time explaining them here). We 

do need to know much about them other than the eigenvalues given by them.  

Operator Eigenfunction equation   Commutator relations 

Total Angular Momentum  

 ̂    ̂
 
   ̂

 
   ̂

 
  

[ ̂    ̂]    

 ̂     (   )   (   )      (   ) 

Angular momentum in z 
direction 

  ̂      ( 
 

  
  

 

  
) 

  ̂    ̂      ̂ 

 ̂     (   )         (   ) 

 

     = Spherical harmonics that depend on l and m quantum numbers 

 

The spherical harmonics are symmetric for filled orbits (full set of quantum numbers) and therefore 

have no dependence on the angles. Hence we can see from these equations that in a vector model 

of the angular momentum it seems as if the angular momentum is precessing about the z axis much 

like the classical angular momentum, however this precession is fictitious and is not a physical 

phenomenon. 

 

 

 

 

 

 

 



  DDK: Quantum Mechanics  

 
18 

Magnetic moment 

The definition of a magnetic dipole moment   is: 

                

                         

 

This can be rewritten if we take the current to be the charge per time and the time to be the 

circumference of the orbit divided by the velocity the particle is travelling at. 

                                  

 ⃡    
 

   
 ⃡ 

e= the charge on an electron (1.6*10
-19

 C) 

 

Spin 
 
In 1921 two German physicists Stern and Gerlach conducted an experiment in which they fired 

neutral silver atoms through a non-uniform magnetic field to be collected on a glass plate. The 

ground state of a silver atom is spherically symmetric and therefore not expected to have any orbital 

angular momentum. At the time of the experiment the spin property was unknown; it was assumed 

that all of the magnetic moment came from the orbital angular momentum. If this were the case 

they would have expected the silver atom to not be deflected at all. As it turned out they noticed 

that the beam was split into two separate beams in opposite directions. The experiment showed 

that there must be another component to the overall angular momentum and has come to be 

known as the spin of a particle. 

Since the beam was split into two separate beams, this new spin must have two orientations, either 

parallel or anti-parallel to the magnetic field. The two possible spin angular momentum states (also 

known as spin up or spin down) are consistent with the spin being   
 

 
. 

 

Spin properties of an electron 

 

 An electron possesses an internal degree of freedom which acts like spin. The complete 

understanding of why this is the case comes from combining quantum mechanics with 

special relativity and was first done by Dirac in 1928. 

 The Hermition operators corresponding to the x, y and z components and the magnitude of 

the spin are denoted by  ̂   ̂   ̂       ̂ . The commutator relations are the same as they 

are for the orbital angular momentum. 

 Consistent with the two commutator relations given in the orbital angular momentum, are 

the eigenvalue equations aswell 

 A matrix representation of the angular momentum operator for a spin ½ particles is given by 

the Pauli spin matrices, with the eigenvalues as 
 

 
. 

 The magnetic moment produced by spin angular momentum is almost the same as the 

orbital angular momentum except for the fact that it has a spin g-factor in front of it which 

has a value of approximately 2 (The precise value of g was predicted by relativistic quantum 

mechanics in the Dirac equation and was measured in the Lamb shift experiment. A natural 

constant which arises in the treatment of magnetic effects is called the Bohr magneton. The 

magnetic moment is usually expressed as a multiple of the Bohr magneton). 
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Spin wavefunctions for two electrons can form four possible states, three triplet states (In which the 

overall spin is 1 and a singlet state (In which the overall spin is 0). The triplet states are all symmetric 

under particle exchange; the singlet state is antisymmetric under particle exchange. 

 

               

        

        

   (         )
 

√   
 

 

               

   (         )
 

√   
 

U = up state = spin ½  

D = down state = spin – ½  

 

Quantum Numbers and Degeneracy 

 

In an atom the total wavefunction is a product of the radial wavefunction, the orbital wavefunction 

and the spin wavefunction. Therefore there are four quantum numbers, three (n, l and ml) that are 

spatial and one for spin (ms). The orbital angular momentum and the spin angular momentum 

numbers can be added to obtain the total angular momentum quantum number (   

     ,  ̂   ̂   ̂).  

Quantum numbers 

Name Symbol Orbital meaning 
Range of 

values 
Value examples 

principal quantum number n shell 1 ≤ n n = 1, 2, 3, … 

azimuthal quantum 

number (angular 

momentum) 

ℓ 
Subshell (s orbital is listed as 0, p 

orbital as 1 etc.) 
0 ≤ ℓ ≤ n − 1 

for n = 3: 

ℓ = 0, 1, 2 (s, p, d) 

magnetic quantum 

number, (projection of 

angular momentum) 

mℓ 
energy shift (orientation of the 

subshell's shape) 
−ℓ ≤ mℓ ≤ ℓ 

for ℓ = 2: 

mℓ = −2, −1, 0, 1, 2 

spin projection quantum 

number 

ms 
spin of the electron (−½ = "spin 

down", ½ = "spin up") 
−s ≤ ms ≤ s for an electron s = ½ 

http://en.wikipedia.org/wiki/Principal_quantum_number
http://en.wikipedia.org/wiki/Azimuthal_quantum_number
http://en.wikipedia.org/wiki/Azimuthal_quantum_number
http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Magnetic_quantum_number
http://en.wikipedia.org/wiki/Magnetic_quantum_number
http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Spin_quantum_number
http://en.wikipedia.org/wiki/Spin_quantum_number
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Degeneracy  

 

This is a term used when different states of a system correspond to the same energy. Most of the 

degeneracies occur when states have some quantum numbers in common that determine the 

energy and different other quantum number (for example the hydrogen atom, the same principle 

quantum number and different spin numbers give a degeneracy). There are also forms of accidental 

degeneracies when two states which are completely separate and not related in any way happen to 

have the same energy at a given point, these usually do not imply anything significant physically. 

Degeneracy can therefore be seen as a sign of symmetry in a system.   
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The Hydrogen Atom 

 
The structure of the hydrogen atom is the best understood application of quantum mechanics, and 

predictions of quantum theory agree very well with experiment. A hydrogen atom consists of a 

single electron orbiting a single proton. The electron can occupy a set of discrete energy levels, 

which are each represented by specific wavefunction. We will apply the theory discussed previously 

to determine electron wavefunctions and what their corresponding energies are. 

 

  

 

 

 

 

 

 

 

 

 

 

Schrodinger equation 

The electric potential energy of an electron in a hydrogen atom is proportional to the Coulomb 

potential of the nucleus. Therefore, the expression for the central potential of a hydrogen atom is: 

                   

 ( )    
  

      
 

r = radial distance from the nucleus 

e= the charge on an electron (1.6*10-19 C) 

                             

 ̂    

  

   
  

 

  
(  

 

  
)  

 ⃡ 

    
 

  

     
 

 

As we see this is an equation in terms of the radial vector, which means in Cartesian coordinates it 

corresponds to a 3 dimensional equation.  We can solve the 3 dimensional equations by the method 

of separation of variables. The natural coordinate system to work in is however the spherical polar’s. 

The solutions in the spherical polar coordinates have solutions of the form: 

                          

 (     )   ( )  
 ( ) ( ) 

 ( )                    
  

                         

 ( )        

 

 

 

 

Figure 5  



  DDK: Quantum Mechanics  

 
22 

This shows that the solution we need to calculate is for the radial equation. 

  

                                                               

( 
  

     

 

  
(  

 

  
)  

 (   )  

    
 

  

     
) ( )    ( ) 

 

Notice that we have substituted for the Angular momentum operator as we discussed above in the 

angular momentum section (The eigenvalues are substituted).  We can see from the radial TISE that 

the angular momentum term and the Coulomb potential can add together to give an ‘effective 

potential’.  

                    

     
 (   )  

    
 

  

     
 

 

 

 

 

 

 

 

 

 

 

 

The radial Schrodinger equation for an electron in the hydrogen atom can be solved for small and 

large distances. [Derivation 16]  

                                   

 ( )             

 ( )           

  √        

                                 

∫ ( )         

 

Full solutions to the radial Schrodinger equation are the associated Laguerre polynomials (distantly 

related to the Hermite polynomials).  

 

Energy levels and degeneracy  

 

The principle quantum number n determines the energy: 

              

   
  

  
 

    
  

       
 , Rydberg energy 

a0= Bohr radius (0.053 nm) 

Figure 6 
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Remarkably the energy is the same as that found in the Bohr model, which correctly accounted for 

the spectral lines emitted by hot hydrogen atoms. There is however one important difference: the 

energy here is determined entirely by the principle quantum number, which is not the same as the 

angular momentum proposed by Bohr. Using quantum mechanics we find that the electrons are not 

in orbits of a certain radius, but are described by radial and angular probability distributions.   

 

For each value of the principle quantum number there exist n-1 states of different l. For each value 

of n, l can take any integer value ranging between 0 and (n-1). This means that each energy level n is 

degenerate in states of different total angular momentum, l. Furthermore, for each value of l, there 

are (2l+1) states of different angular momentum projections. Therefore, the total angular 

momentum degeneracy of the nth energy level is n2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 
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Particles and multi electron atoms 

 

Quantum mechanics only deals with the results of measurements, so there is no physical way of 

knowing whether two identical particles have been interchanged. In other words, under particle 

exchange the probability does not change.  

 

                                     

 (   )     (   ) 

If the negative sign holds, then the overall wavefunction is antisymmetric. Particles that have this 

property are called fermions; this includes protons, neutrons and electrons.  The Pauli Exclusion 

Principle comes about from this; it states that two identical fermions cannot be in the same 

quantum state (as this would mean the wavefunction would be symmetric under particle exchange). 

 

If the positive sign holds, then the overall wavefunction is symmetric. These particles are called 

bosons; this includes photons,   particles, and Helium atoms. 

 

The electron orbitals in multielectron atoms are filled up using two principles: 

 The Aufbau principle: the electrons are put in orbitals of increasing energy.  

 Pauli Exclusion Principle: no two electrons in a system can share an identical set of quantum 

numbers. In an atom this means that each electron must have different combinations of the 

quantum numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

Screening 

 

The energy level structure of atoms with multiple electrons is modified from the hydrogen atom. 

This is because in heavier atoms the electrons will fill more and more shells and therefore will be 

further away from the nucleus. More importantly there will be the inner electrons between the 

outer electrons and the nucleus therefore for large distances the outer electrons will only ‘see’ part 

of the charge of the nucleus as the inner electrons will ‘cancel’ out some of the positive charge from 

the nucleus (we can use Gauss’s law to see the mathematical model for it). This effect is known as 

‘Screening’ and ‘Shielding’. This effect will remove the degeneracy between the different orbital 

angular momentum, l, states in a given n level. 

 

Figure 8 
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First-order non-degenerate time-independent perturbation theory 

 
There are only a few Quantum Mechanical problems that can be solved exactly; in real life problems 

numerical methods are used to solve the Time Independent Schrodinger Equation and find the 

energies and wave-functions. In this section we will consider one of the simplest techniques: first 

order, time-independent, non-degenerate perturbation theory. I will state the important equations 

here and leave the derivations for later. 

                               

   ∫  
         

   = change in the ground state energy  

H1= addition to ground state Hamiltonian 

                                                      

   
∫  

        

     
 

It is important to see that even though the wavefunctions without the perturbations are normalised, 

the perturbed wavefunctions are not as they will have another term that needs to be added (the 

sum of the coefficients squared). 

 

                                         

∫          ∑|  |      ∑ |
∫  

        

     
|
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Wave packets and the Uncertainty Principle 

 
A plane wave represents a solution that satisfies the wave equation and represents a wave 

propagating in the x direction with a given velocity. As we discussed previously they do not have any 

physical meaning, however there amplitude squared represent the probability density function. As 

we discussed right at the beginning the phase velocity and the group velocity are not the same for 

matter waves. The state function that represents the classical particle is a wavepacket which is 

constructed from a sum of the eigenstates that we find by solving the Schrodinger equation.  The 

wavefunctions that describe the state (if you remember I discussed in the beginning that the state of 

quantum mechanical systems is like a vector in a vector space) can be transformed from x-space to 

k-space according to the Fourier transforms (we have discussed in our Mathematics course). 

 

Gaussian Wave packets 

 

If we consider the width of the distribution as a measure of the uncertainty, it can be proven that 

the Gaussian wave packets provides the minimum uncertainty. This result shows that we cannot 

know the position of a particles and its momentum at the same time. If we try to localize a particle 

to a very small region of space, its momentum becomes uncertain. If we try to make a particle with a 

definite momentum, its probability distribution spreads our over space. Heisenberg’s uncertainty 

principle states that it is impossible to determine with arbitrarily high accuracy both the position and 

momentum of a particle. 

 

                                                 

| (   )|   √
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Derivations 
 

Derivation 1  

 Solutions of the one dimensional wave equation using method of separation of variables 

 

We start with the one dimensional wave equation: 

  
   (   )

   
   

   (   )

   
  

 

Now we seek product solutions for the function  , such that: 

 (   )   ( ) ( ) 

Note here that we assume that the wavefunction is separable (this is not always case, this means 

that the product solutions are independent of each other, which in classical probability theory 

means that their solutions have independent probability distributions, we see this is an important  

aspect when it comes to entangled as product solutions cannot be entangled[Ḍ] ).  

 

Substitute for the product solutions in the wave equation: 

   ( )
   ( )

   
   

   ( )

   
 ( )  

Divide both sides of the equation by the product solution to get each side only depending on a single 

variable: 

 

 ( )

   ( )

   
  

   ( )
     

 ( )
 

Now we see that both sides of the equation that are only depending on two separate independent 

variables are equal to each other. The only way this would be possible is if they are both equal to a 

constant (that may be zero, however this would lead to trivial solutions of the equation which we 

are not interested in).  We call the separation constant    , this leads us to obtaining two linearly 

ordinary homogenous differential equations which we can solve easily (find the complementary 

function, particular integral etc.): 

                 
   ( )

   
    ( )   

                
   ( )

   
    ( )     

 

Solve the linear homogenous ordinary differential equations: 

 

                              

                                

 

These solutions can now be combined by summing over the product solutions to give the overall 

wavefunction solution to the wave equation: 

 (   )  ∑ ( ) ( ) 

 



  DDK: Quantum Mechanics  

 
28 

Which, for a special case of a wave moving to the right is given by the solution stated in the notes: 

 

 (   )     (      ) 
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Derivation 2  

Momentum operator in one dimension 

 

Consider a wavefunction that has the form of a plane wave as stated in derivation 1 and 

differentiate it with respect to position (in one dimension we call it x): 

 

  (   )

  
  

 

  
   (     ) 

  (   )

  
      (     ) 

  (   )

  
    (   ) 

 

Since this equation holds for any ‘well behaved’ function, we can divide through by the function and 

i to obtain the Wavevector operator: 

 ̂     
 

  
 

From the de Broglie relation we know: 

     

 

Now we postulate that this equation holds for operator’s aswell to obtain the momentum operator: 

 

 ̂    ̂ 

 ̂     
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Derivation 3  

Energy operator in one dimension 

 

Consider a wavefunction that has the form of a plane wave as stated in derivation 1 and 

differentiate it with respect to time: 

  (   )

  
  

 

  
   (     ) 

  (   )

  
       (     ) 

  (   )

  
     (   ) 

Since this equation holds for any ‘well behaved’ function, we can divide through by the function and 

i to obtain the frequency operator: 

 ̂    
 

  
 

From the Einstein relation we know: 

     

 

Now we postulate that this equation holds for operator’s aswell to obtain the energy operator: 

 

 ̂    ̂ 

 ̂    
 

  
 

This definition can also be used to derive the Hamiltonians in classical and quantum mechanics. 
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Derivation 4 

Quantum mechanical Hamiltonian operator 

 

We start with the classical definition of the Hamiltonian: 

 

                                          

 

Now we assume as we have done before that this equation also holds for operators: 

 

 ̂   ̂   ̂ 

 

Now we need to obtain the kinetic energy and potential energy operators. Starting with the kinetic 

energy operator, we take the classical definition for kinetic energy and use the operators to find the 

quantum mechanical version: 

            
  

  
 

Substitute the momentum operator into the classical definition: 

                    ̂    
  

  

  

   
 

 

The potential energy varies from system to system, as it depends on the environment of the system, 

therefore generally we assume the potential to be dependent on the distance and generally write it 

as: 

 ̂   ( ) 

Combining the equations of the potential energy operator and the kinetic energy operator to give 

the Hamiltonian operator: 

 ̂    
  

  

  

   
  ( ) 
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Derivation 5 

Schrodinger equation  

 

The TDSE can be derived by combining all the derivations we have discussed above.  

The total energy of system will be given by the energy operator, operating on the wavefunction: 

 ̂ (   )    
  (   )

  
 

We can equate this to the Hamiltonian acting on the wavefunction which yields the TDSE: 

 

( 
  

   

  

   
  ̂( )) (   )    

  (   )

  
 

 

This equation describes the behaviour of a particle of mass m, moving under the influence of a 

potential energy function.  Solutions of the wavefunctions that satisfy the Schrodinger equation 

determine everything that can be known about the system. Therefore, the Schrodinger equation is 

very powerful and elegant equation.  
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Derivation 6 

Separation of variables for TDSE 

 

We use the same sort of method as we did to solve for the wave equation (as they are both partial 

differential equations with two variables). Start with the TDSE: 

 

( 
  

   

  

   
  ̂( )) (   )    

  (   )

  
 

 

Separate the spatial part from the temporal part by looking for product solutions of the form: 

 

 (   )   ( ) ( ) 

 

Substituting the product solution into the TDSE: 

 

 
 ( )  

  

   ( )

   
  ( ) ( ) ( )   ( )  

  ( )

  
 

 

Divide through by the product solution to get two independent linear homogenous ordinary 

equations: 

 

 ( )
( 

  

  

   ( )

   
  ( ))  

 

 ( )
  

  ( )

  
 

Equating both sides of the equation to a constant which we call energy; E (This is in analogy of the 

classical system): 
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  ( )) ( )    ( ) 
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Derivation 7 

Free Particle wavefunctions 

 

This is a particle with no potential energy term, therefore the Hamiltonian only consists of the 

kinetic energy, and therefore the TISE is: 

 
  

  

   ( )

   
    ( ) 

 

This is a linear homogenous ordinary differential equation which we can solve using normal methods 

of finding the auxiliary equation etc.: 

 ( )                

 

This can now be combined with the temporal part of the solution to give the full solution of the 

wavefunction of a free particle: 

                        

 (   )     (     )     (      ) 
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Derivation 8 

Particle Flux 

 

Consider two fluxes of particles coming in at two points, x1 and x2. They add to give rate of increase 

of ∫       in the limit that        . We need to find  
 

  
∫       

  

  
, so we let the 

Schrodinger equation and its complex conjugate equal: 

 

    
  

  

   

   
      

  

  
 

     
  

  

    

   
        

   

  
 

 

The following derivation is complex and we are not expected to know it, just be able to interpret the 

result (which is best done by understanding the derivation!): 

 

∫ (       )   
  

  
∫ ( 

     

   
   

   

   

  

  

  

  

)     

 

First term on R.H.S: 

∫ (  
   

   
)        

   

  
   

    ∫
  

  

   

  
    

  

  

  

  

 

 

We can find a similar equation for the second term (simply swap the complex conjugate with the 

non-conjugated wavefunctions. This can then be substituted into the equation above to give: 

 

 (  )   (  )   
 

  
∫       

  

  

    

Where j(x) represents the flux at any given position and is calculated by: 

 

 ( )  
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Derivation 9 

Potential Step TISE solutions 

 

               

 ̂( )  {
        

              
 

Consider a beam of particles is incident on a potential step of height V. The particles are incident 

from the left, some of them are reflected back and some are transmitted into the region with the 

potential. The boundary between the two regions of different potential occurs at x = 0. In this 

derivation the electron is unbound, classically we expect that the probability for reflection is 1 if E < 

V, and is 0 otherwise. 

 

Boundary conditions are that the wavefunction and its derivative must be equal  in both the regions, 

which means that the wavefunction and its derivative are continuous at x =0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E > V 

Region 1: 

The Hamiltonian in this region has no potential (same as the free particle, as the electron is 

unbound), therefore only has the kinetic energy term: 

 

 
  

  

   ( )

   
    ( ) 

 

The solutions are therefore the same as the ones found for the motion of a free particle in this 

region: 

 ( )                    √
   

  
 

 

 

 

Region 1 

Region 2 
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Region 2: 

The Hamiltonian in this region has a potential V: 

 
  

  

   ( )

   
   ( )     ( ) 

 

The solutions are found using the same method as before except this time we have a potential 

energy: 

 ( )                  √
  (   )

  
  

We can set D = 0, as left moving wave is not physical.  

Applying the boundary condition we get: 

      

  (   )      

Solving these equations: 
 

 
 

   

   
 

 

 
 

  

   
 

We should note here that C is essential the transmission coefficient and B is the reflection coefficient 

(this can be seen from the form of the solutions), therefore we can relabel C= T and B = R and A can 

always be set to 1. For E > V, k and q are real.  

Reflection and Transmission probabilities are given by the amplitude squares of the respective 

coefficients.  

 

E < V 

Region 1:  

Same as before 

Region 2: 

The solutions are similar to what we found in region one, except that q is imaginary therefore we 

have a ±i in front of the power, which means the function an exponential instead of an oscillation. 

 

 ( )        

 

This function is exponentially decaying, therefore there is a finite probability of finding the particle in 

the classically inaccessible region x > 0. This barrier penetration is a quantum mechanical 

phenomena, the exponentially decaying wavefunction is called an evanescent wave.  

 

Once again we can apply the boundary conditions to the solutions: 

 

      

  (   )      
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Solve the two equations: 
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Derivation 10 

Infinite Square Well 

 

               

 ̂( )  {
       
             

 

 

A particle is confined in space between       as it would require an infinite amount of energy 

to be outside this region.  Therefore the wavefunction must be zero in the regions of infinite 

potential and hence we only have to solve for the region with zero potential. 

The Hamiltonian is the same as it was for a free particle: 

 
  

  

   ( )

   
    ( ) 

With the same solutions: 

 ( )                    √
   

  
 

The interesting part is the boundary conditions are slightly different.  ( ) is continuous; therefore, 

the wavefunctions must vanish at the boundaries with complex exponential solutions like the ones 

we have.  

The first boundary condition is that the wavefunction at x = 0 must be zero: 

 ( )     

Therefore: 

      

 ( )      (  ) 

The second boundary conditions is that the wavefunction at x = a must be zero: 

 ( )      (  )    

Therefore: 

   ∑
  

 

 

   

 

Now that we have the wavefunctions we can normalise them because we know that the probability 

of finding the particle in the interval from 0 to a must be 1: 

∫ | ( )|     
 

 

 

Substitute for   the solution we have obtained: 

  ∫     (  )   
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Therefore we get the normalised wavefunction to be: 

 ( )   √
 

 
     (   ) 

We can also obtain values for the energy now that we know that k is quantised: 

   
(   ) 
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Derivation 11 

Finite Square Well 

 

 ̂( )  {
        

              
 

There are two regions that we need to solve for. The well, in which the potential is zero has the 

same solutions as the infinite square well with the same region so I will just state them from the 

derivation above. 

 

Well Hamiltonian: 

 
  

  

   ( )

   
    ( ) 

Solutions:  

 ( )                    √
   

  
 

Hamiltonian for the region with potential energy: 

 
  

  

   ( )

   
    ( )     ( ) 

The solutions for this are the same as the solutions for the potential step function; therefore I will 

simply quote the result: 

 ( )                √
  (    )

  
 

We can see that for the region       the solution must be the part which is moving to the left and 

the opposite for the region of     . Therefore we can summarise the solutions as: 

      ( )   {

             

    (  )      (  )          

             
 

Now we have to determine the boundary conditions. In this case they are the usual ones that we 

state in the beginning (the function and its derivative are continuous at the two boundaries): 

At       :  

  (  )    (  ) 

(
   ( )

  
)(    )  (

   ( )

  
)(    )   

At x = a: 

  ( )    ( ) 
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(
   ( )

  
)(   )  (

   ( )

  
)(   )   

These boundary conditions give us four simultaneous equations, which can be solved to determine 

values for the integration constants A, B, C and D, as well as place restrictions to k and q. When 

written as a matrix, the four simultaneous equations are: 

 

(

        (  )    (  )  
          (  )      (  )  

     (  )     (  )     

     (  )     (  )       

)(

 
 
 
 

)    

 

Solutions for these equations are of two sorts: 

Symmetric solutions: A = D and C = 0 

 ( )   {

              

    (  )          

             
 

 

The values of A and B are set by the system in the question. This wavefunction is symmetric about 

the origin; therefore, this wavefunction is said to have even parity. Under these coefficient 

restraints, if we expand lines 1 and 2 of the matrix and take their ratio, we see that k and q are 

related by: 

    (  )    

Asymmetric solutions: A = -D and B = 0 

 ( )   {

              

    (  )          

              
 

 

The values of C and D are set by the system in question. This wavefunction is asymmetric about the 

origin; therefore, this wavefunction is said to have odd parity. Under these coefficient restraints, is 

we expand the lines 3 and 4 of the matrix and take their ratio, we see that k and q are now related 

by: 

    (  )     

 

The boundary conditions are only satisfied if the equations for k and q are solved. However both 

these equations are transcendental therefore they cannot be solved analytically and have to 

obtained numerically. 
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Derivation 12 

Finite potential barrier 

 

The potential energy is a step function given by: 

 

 ̂( )  {
        
             

 

Note that      

In the classical case we know that the particle traveling towards the potential barrier has no 

probability of going through it, however in the quantum mechanical case there is a probability of a 

particle going through the barrier and coming out the other side (examples are radioactivity of 

nuclei). 

From the potential we can see that the TISE can be split into three different regions, we have solved 

all of the TISE’s in previous derivations therefore I simply quote the results here for the three 

regions: 

      ( )   {
              

                

         

 

 

We have three solutions here for the three separate regions (k and q have their usual definition from 

previous derivations), I have labelled the coefficients r and t as what they are (transmission and 

reflection coefficients. It is also important to note that I have set the coefficient of the incoming 

wave equal to one as that is what we can control. 

 

As with the finite square well the boundary conditions are that the wavefunction and its derivative 

must be continuous at the boundaries of the potential: 

X=0 

  ( )    ( ) 

(
   

  
)    (

   

  
)    

These lead to two equations: 

        

             

 

These equations can be used to eliminate r and obtain an equation equal to A: 

 

  
 (   )      

   
 

X = a 

  ( )    ( ) 

(
   

  
)    (

   

  
)    

These lead to two equations: 
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These two equations can be used to eliminate B and to obtain an equation equal to A: 

  
     (    )

     
 

We know use the fact that       and substitute it in we obtain the equation for the transmission 

coefficient: 

  
       

     (  )   (
 
 

 
 
 
)     (  )

 

 

 

We can square this expression and use the trig identity: 

 

                 

 

to obtain the probability of transmission: 

 

| |  (  ((
     

   
)      (  ))   

 

We can now substitute for the values of k and q to get: 

 

| |  (  

     (√  (  
 
  

))

 (
 
  

) (      

) 

 

Where v is a dimensionless quantity defined as: 
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Derivation 13 

Harmonic oscillator 

 

The potential of an harmonic oscillator comes from Hooke’s law and is of the from: 

 ( )  
 

 
      

Therefore the TISE becomes: 

( 
  

  

  

   
 

 

 
     ) ( )    ( ) 

 

First we change the variables to obtain a dimensionless equation. Therefore we let: 

              √
 

  
 

This gives the differential equation: 

 
  

 
( 

  

      ) ( )    ( ) 

 

We know that a Gaussian solution satisfies the TISE above (this can be shown by substitution): 

 ( )    
 

  

    

 

Applying the normalisation condition, we can find an expression for the constant A, thus giving us 

the normalised ground state wavefunction: 

∫ | |     
 

  

 

  ∫  
   

         
 

  
√   

Therefore we get a condition on the normalisation: 

  (
 

   
)
 
  

For the ground state wavefunction we have: 

  ( )  (
 

   
)
 
    

 
  

     

The ground state energy is given by substituting the wavefunction back into the TISE: 

  

 
(       )   

  

        
  

  

Therefore: 

   
  

 
 

For higher energy solutions, we try a Gaussian solution multiplied by a polynomial in y, H(y): 

 

 ( )   ( )  
  

  

 

 

 



  DDK: Quantum Mechanics  

 
46 

Doing this and defining  
  

  
 , we find that the TISE obeys a special ordinary differential equation 

called Hermite’s equation: 

   ( )      ( )   ( )(   )    

 

The functions that satisfy this equation are called Hermite polynomials, H(y). 

It turns out that the solutions are only normalisable when        where n is an integer starting 

at 0. (This is found using a power series method of solution, which we have covered in our 

mathematics course.)  

   (  
 

 
)    
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Derivation 14 

Ehrenfest Theorem  

 

Consider the wavefunction of the form: 

 (   )    (     ) 

 

We start with the expectation value of an arbitrary operator  ̂: 

〈 〉   ∫   (   )  
 

  

 ̂   (   ) 

To find the change in time of a quantity we differentiate both sides of the equation with respect to 

time: 

 〈 〉

  
  

 

  
 ∫   (   )  

 

  

 ̂   (   ) 

Differentiate each term on the R.H.S with respect to x using the chain rule: 

 〈 〉

  
 ( ∫

    (   )

  
  

 

  

 ̂   (   ))   (∫   (   )
 

  

  ̂

  
  (   ))  (∫   (   )

 

  

 ̂  
  (   )

  
) 

 

It can be seen that the first term on the R.H.S brings down a factor of   , the 2 term is just the 

expectation value of the quantity 〈 
  

  
〉, the third term brings down a factor of –   : 

 

 〈 〉

  
 

 

 
(∫   (   )  

 

  

 ̂ ̂   (   ))  
 

 
(∫   (   )  

 

  

 ̂  ̂  (   ))    〈
  ̂

  
〉 

The first two terms on the R.H.S can be rewritten as: 

 

 〈 〉

  
  

 

 
(∫   (   )  

 

  

 ̂ ̂   ̂ ̂   (   )) 

Using the definition of commutators this can be simply written as: 

 

 〈 〉

  
 

 

 
〈[ ̂  ̂]〉  〈

  ̂

  
〉 

 

This is Ehrenfest’s Theorem and is very powerful as it can be seen that if a quantity has no time 

dependence and it commutes with the Hamiltonian then it must be a conserved quantity. 
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Derivation 15 

Orbital angular momentum  

 

We use the classical definition of Angular momentum: 

        

Define the position and momentum operators: 

    ̂    ̂    ̂ 

    ̂  ̂    ̂  ̂    ̂ ̂ 

Now we assume that the values of linear momentum can be equated to the quantum mechanical 

operators in this equation aswell and take the cross product: 

|
 ̂  ̂  ̂
   
      

| 

This gives values of the orbital angular momentum in Cartesian components: 

  ̂      ( 
 

  
  

 

  
) 

  ̂      ( 
 

  
  

 

  
) 

  ̂      ( 
 

  
  

 

  
) 
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Derivation 16 

TISE of hydrogen atom for small and large distances 

 

We start with the TISE for the hydrogen atom: 

 

( 
  

     

 

  
(  

 

  
)  

 (   )  

    
 

  

     
) ( )    ( ) 

Let  ( )  
 ( )

 
: 

  

   

   ( )

   
 (  

 (   )  

    
 

 
  

     
) ( ) 

As    : 

  

   

   ( )

   
    ( ) 

This is a second order linear homogenous equation that we have solved many times, the solutions 

are: 

 ( )             

 

The term that is exponentially increasing is not physical and k has its usual meaning, therefore: 

 

 (   )        

As    : 

  

   

   ( )

   
 (

 (   )  

     
) ( ) 

Now we try  ( )      as a solution: 

 (   )      (   )     

      (   )    

         (   ) 

 

Substitute the value of x into the equation for f(r): 

 

 ( )         (   ) 

 

The solution with the negative power of r is unphysical for small values of r (also the value of +1 in 

the positive power is irrelevant), therefore:  

 (   )      
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Derivation 17 

Perturbation theory 

 

Start with unperturbed system: 

    (   )      (   ) 

Introduce a perturbation in the energy: 

         

        

  (   )    (   )  ∑     (   )

 

   

 

Substitute these relations into the top equation: 

(     )(  (   )  ∑     (   ))  

 

   

(    )((  (   )  ∑     (   ))

 

   

 

 

Multiplying through and ignoring the second order terms (as they will be extremely small for small 

perturbations) we get: 

 

  ∑     (   )

 

   

     (   )    ∑     (   )

 

   

    (   ) 

 

Multiply through by   
 (   ) and integrate over all space we get: 

 

   ∫   
 (   )    (   )  

 

  

 

 

Multiply through by   
 (   ) and integrate to get an equation to calculate the coefficients: 

 

    
(∫   

 (   )    (   )   
 

  
)
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