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Preface

Introduction

Relativity, along with quantum mechanics, is one of the pillars on which all of modern physics is
built upon. Some, like Pedro Ferreira, argue that general relativity is ”the perfect theory” [1],
however there certainly are points where it breaks down and the fact that it is incompatible with
Quantum (field) theory means that even if it is the perfect theory, it requires some modifications.

General and special relativity provide mind blowing insights into our universe. Even today, almost
a century on from when it was first discovered, general relativity continues to throw the cat among
the pigeons from time to time, the most recent being the discovery of gravitational waves from the
recent BICEP 2 experiment at the south pole, which provide an insight into the theory of inflation
that we will come to in future chapters.

The notes are structured into three parts. The first part is aimed to provide a detailed look
at the formulation of relativity theory, both general and special. The starting point for relativity
was Maxwell’s equations of electro-magnetism, which suggest a constant speed of propagation
for electro-magnetic waves, which we know commonly refer to as the speed of light, c. It was
Einstein’s genius, that took this simple looking fact and transformed our intuition of space-time
and everything in it. Part 2 goes into hardcore gravitational physics, much of which is used in
present day research. Finally, part 3 gives a brief sketch of cosmology and it is this part that is
most relevant for the summer project on inflation. Detailed calculations of the power spectrum
and quantum field theory in curved space-time are provided. These go along with the summary
report produced as part of this project.

”Physics is not a finished logical system. Rather, at any moment it spans a great
confusion of ideas, some that survive like folk epics from the heroic periods of
the past, and others that arise like utopian novels from our dim premonitions
of a future grand synthesis” Steven Weinberg.

Notation

• The operator ∇ is defined as:

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(0.1)

• Einstein summation convention is assumed, where all repeated indicies are summed over:

4∑
µ=0

xµxµ ≡ xµxµ = x0x0 + x1x1 + x2x2 + x3x3 (0.2)

v



vi PREFACE

• Co-ordinates are generally defined as:

µ = 0 ≡ t

µ = 1 ≡ x

µ = 2 ≡ y

µ = 3 ≡ z (0.3)

• The Kronecker delta symbol, δ, is defined as:

δµν =

{
1 if µ = ν

0 if µ ̸= ν
(0.4)

• The Levi-Civita symbol, ϵijkl...n, in n dimensions is defined as:

ϵi,j,k,l...n =


1 if (i, j, k, l...n) is an even permutation of (1,2,3,4...n)

0 otherwise

−1 if (i, j, k, l...n) is an odd permutation of (1,2,3,4...n)

(0.5)

• The identity matrix is symbolized by I, in the dimension that should be obvious from
the expression it is in relation with.

• Rn stands for an n dimensional Euclidean space.
• If an object is infinitely differentiable on a subset of a given field, it is denoted by C∞.

In other words, if a function, f , is parametrised by λ and is C∞:

∃ dn

dλ
f(λ) ∀n ∈ {0, 1, ...∞} (0.6)

In general, Greek indicies run over 0,1,2,3 and Latin indices run over 1,2,3, unless stated
otherwise.

There is a slight change in notation for part 2. Firstly the metric has the signature +,-,-,- as
there will be aspects of particle physics here and this is the convention used in particle physics.
Moreover, we work in units:

~ ≡ c ≡ 1 (0.7)

from part 2 onwards, although at certain points in part 1 these notations are also used.



Part 1

Maxwell to Einstein: Laying the
foundations of relativity





CHAPTER 1

Special relativity

1. A close look at Maxwell’s equations

Let’s begin with James Clerk Maxwell’s discoveries in 1860’s. Maxwell’s discovery was to
unify the laws of electricity and magnetism, which at the time seemed like two different things.
This discovery has proved to one of the most important of mankind, not just in physics, but also
in technology. Almost every appliance we use today is linked in some way to Maxwell’s equations.

They are simple looking differential equations that carry beauty and symmetry between them
in equal measure, so lets start off by writing them down in their original form (before Maxwell’s
key discovery):

(1) The first equation is one that is attributed to Carl Friedrich Gauss:

∇.E⃗ =
ρ

ϵ0
(1.1)

where ρ is the charge density, ϵ0 is the permittivity of free space in a vacuum, E⃗ is the
electric field. This equation states that the divergence of the electric field, is proportional
to the density of the electric charge, with the constant of proportionality being 1

ϵ0×Volume
.

Or in other words, the electric charge is the source of the electric field.
(2) This equation is not attributed to any person, it is simply an experimental fact that has

been observed for years:

∇.B⃗ = 0 (1.2)

This equation actually carries a very puzzling fact of our universe. It states that
the divergence of a magnetic field is always zero, which is a statement of the fact that
no magnetic charges (magnetic monopoles) are ever observed in nature. There is no
fundamental reason for this that we know of, thus it remains a big puzzle in physics
today.

(3) Faraday is attributed with this equation, even though he never wrote it down, he was
the first one to discover its effect in his famous experiments:

∇× E⃗ = −∂B⃗
∂t

(1.3)

This equation states that if there is a time varying magnetic field, it can also act as

a source for an E⃗ field, or more specifically, the curl of the E⃗ field i.e the E⃗ field rotates

around the B⃗ field.
(4) The final equation was first outlined by Ampere:

∇× B⃗ = −µ0J⃗ (1.4)

where µ0 is the permeability of free space. J⃗ is a current density and it acts as a
source of the magnetic field.

Maxwell’s genius was to realise that all these equations were describing the same phenomena,
but not in the form they are currently in. He realised that these equations seemed to contradict
the fact that was well established (by Benjamin Franklin) that electric charge is always conserved.
More specifically, the equations did not obey:

3



4 1. SPECIAL RELATIVITY

dρ

dt
= −∇.J⃗ (1.5)

Which of course means if a electric charge is depleted it must move away from its position, so
the fact that this is not obeyed is really a big problem! The problem can be spotted in Eq 1.4, to
see how, lets take the divergence of both sides:

∇.(∇× B⃗) = −µ0∇.J⃗ (1.6)

The curl can be written as:

(∇× B⃗)i = ϵijk
∂

∂xj
Bk (1.7)

So we can re-write the R.H.S of Eq 1.6 as:

∇.(∇× B⃗) =
∂

∂xi
ϵijk

∂Bk
∂xj

= ϵijk
∂

∂xi
∂

∂xj
Bk

= ϵ1jk
∂

∂x1
∂

∂xj
Bk + ϵ2jk

∂

∂x2
∂Bk
∂xj

+ ϵ3jk
∂

∂x3
∂Bk
∂xj

= ϵ123
∂

∂x1
∂

∂x2
B3 + ϵ132

∂

∂x1
∂

∂x3
B2 + ϵ213

∂

∂x2
∂

∂x1
B3 + ϵ231

∂

∂x2
∂

∂x3
B1

+ ϵ312
∂

∂x3
∂

∂x1
B2 + ϵ321

∂

∂x3
∂

∂x2
B1 (1.8)

Since ϵijk is totally anti-symmetric and the fact that partial derivatives are commutative, it
is obvious that the terms on the R.H.S of Eq 1.8 cancel. Therefore Eq 1.6 gives:

∇.J⃗ = 0 (1.9)

Which contradicts Eq 1.5. Maxwell then wanted to remove this inconsistency, and the obvious
way to do this is to work backwards and assume Eq 1.5 holds and try to find what the dρ

dt term is
from Eq 1.1, which is:

ϵ0
∂

∂t
∇.E⃗ (1.10)

Now it is not hard to see that adding:

ϵ0µ0
∂E⃗

∂t
(1.11)

to Eq 1.4, will remove this inconsistency. This was Maxwell’s great isnsight and this term is
often referred to as Maxwell’s displacement current. The equations are now ready to be written
in their world renown form:

∇.E⃗ =
ρ

ϵ0
(1.12)

∇.B⃗ = 0 (1.13)

∇× E⃗ = −∂B⃗
∂t

(1.14)

∇× B⃗ = µ0J⃗ + ϵ0µ0
∂E⃗

∂t
(1.15)

It is easy for us to see how this inconsistency was removed with a few simple steps now, how-
ever it took Maxwell (who was probably the greatest mind of his generation) years to work out
(in the process of developing these equations he had to develop the entire field of vector calculus
and also introduce partial differential equations). Hindsight is a wonderful thing!
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It was this last term that Maxwell added that leads to the fact that these equations predict a
solution that takes on the form of a wave. To see how, let’s take a simple system, in which there
are no charges or currents:

ρ = J⃗ = 0 (1.16)

Under these conditions, take the curl of Eq 1.15:

∇× (∇× B⃗) = ϵ0µ0

(
∇× ∂E⃗

∂t

)

∇×
(
ϵklm

∂

∂xl
Bm

)
= ϵ0µ0

(
ϵklm

∂

∂xl
Em

)
ϵijk

∂

∂xj
ϵklm

∂

∂xl
Bm = ϵ0µ0ϵklm

∂

∂xl

(
∂Em
∂t

)
∂

∂xj
∂

∂xl
ϵijkϵklmBm = ϵ0µ0ϵklm

∂

∂xl

(
∂Em
∂t

)
(1.17)

There is an identity that needs to be used now:

ϵijkϵklm = δilδjm − δimδjl (1.18)

Using this, Eq 1.17 can be written as:

−∇2B = ϵ0µ0
∂

∂t

(
∇× E⃗

)
(1.19)

Now substitute from Eq 1.14 for
(
∇× E⃗

)
:

∇2B⃗ = ϵ0µ0
∂2B⃗

∂t2
(1.20)

Similarly, taking the curl of Eq 1.14 and following the same procedure of finding ∇× B⃗ from
Eq 1.15 to get:

∇2E⃗ = ϵ0µ0
∂2E⃗

∂t2
(1.21)

These are both wave equations. As an example suppose the magnetic field is a function of
time and only the x spatial dimension:

∂2B⃗

∂t2
=

1

ϵ0µ0

∂2B⃗

∂x2
(1.22)

The solution to this equation is any function of (x− ct), where c takes the form of a velocity,
and since the equations are linear we can also form superposition functions of the form:

B⃗ = F1(x− ct) + F2(x+ ct) (1.23)

Substituting this solution into Eq 1.22 yields the relation:

c2 =
1

ϵ0µ0
(1.24)

This function, is a function whose shape is fixed, but its center moves, which are just waves!
So Maxwell found that these were waves of electro-magnetism that traveled at a fixed speed that
depends on two of the fundamental constants of nature ϵ0, µ0. These had already been measured
in experiments and Maxwell put the experimentally measured values in to obtain a value for c
as 3 × 108 ms−1. Which is just the speed of light(which had also been measured in experiment
before). This was Maxwell’s true genius; using only pen and paper (and his brain!), he followed
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the mathematics to find that light, which nobody knew what it really was, is infact an electro-
magnetic(EM) wave. This solution also predicts that there should be waves of any wavelength
that move with this speed, so infact we had discovered the whole spectrum of EM waves.

If that was not enough, the solution to Maxwell’s equations tells us something more about the
waves aswell, and that is seen by Eq 1.12 and Eq 1.13. For example, if we put the solution in Eq
1.23 into Eq 1.13, it is seen that the wave cannot change in the x direction, it is only the y and z
components that can vary. which in essence tells us that the waves are transverse.

2. Symmetry of Maxwell’s equations

2.1. Galilean transformations. As with most of our great theories, there is a lot more to
them then first meets the eye(and it usually takes more people, other than the inventor, to fully
appreciate its consequences) and the same is true for Maxwell’s equations. The equations posses
a lot of symmetries, some are more obvious then others. An obvious one is the dependence (or
independence) of time translations.

Making a transformation of the form:

t→ t+ t′ where t′ ∈ {Constant} (1.25)

leaves Maxwell’s equations invariant, as there is no explicit time dependence in them, just
derivatives of time, so any time independent quantity will not affect the equations of motion.
Another symmetry that is immediately obvious is that of spatial translations, consider the trans-
formation:

x⃗→ x⃗+ x⃗′ where x′ ∈ {Constant} (1.26)

this also does not affect the EM equations as they only involve derivatives of x⃗. So there are
four (x, y, z, t) independent translations under which Maxwell’s equations are invariant. These are
expected from Galilean transformations as we do not expect the physics to change depending on
what coordinates are being used.

2.2. End of Newtonian mechanics. Maxwell’s equations do something very strange that
no other theory upto its time (or even since) have done. It predicts a speed. This seems totally
counter-intuitive and created a big problem for physics at that time (although physicists did not
realise this at that time), as from Newtonian mechanics, speed is always relative. The speed of an
object never determines the physics of its system, it is always relative to something. Yet Maxwell’s
equations do not show any relative motion, or any sight of a frame of reference, it is a the same
speed in all frames of reference. Maxwell realised this of course, but it was something he did not
take further. It was not until Einstein, did the true consequences of this bizarre fact came to the
surface.

In Newtonian mechanics, there is implicitly a symmetry built into the equations, that if you
change a system into a coordinate system in an inertial (non-accelerating) frame of reference, then
the laws of physics don’t change; i.e making a transformation:

x→ x+ ẋt where ẋ ∈ {Constant} (1.27)

doesnt change anything. The reason for this is obvious, and it is the fact that Newton’s
equation:

F = mẍ (1.28)

only involves second derivatives of time.

The whole idea behind symmetry and laws of physics (Noether’s theorem etc), begins from the
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symmetry hidden in Maxwell’s equations. To see these symmetries we have to re-write the equa-
tions in tensor formalism, which unifies Maxwell’s equations further.

2.3. Tensor formalism. Begin by defining four vectors:

xµ ≡ (ct, x⃗) = (ct, x, y, z) (1.29)

where xµ is the four vector and x⃗ is a three vector consisting of the x, y, z components. We
can do this, not just for convenience but from the fact that c is a fundamental constant of nature
and so time and space become interchangeable by simply multiplying/dividing by c. We often
call xµ, a space-time coordinate. This is actually a far more profound consequence of Maxwell’s
equations then it is often given credit for, as it truly unifies space-time.

Before we go any further, there a few more items that need to be defined:

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
=

(
∂

c∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(1.30)

Next, we define a matrix, known as the Minkowski metric that is crucial for all of our physical
theories:

ηµν ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.31)

It sometimes also has the signature of (+ - - -), but the important part is the difference in sign
between temporal and spatial components. This change in sign accounts for all the differences
between space and time, for example, the fact that we cannot move backward in time comes from
the difference in sign. In fact the main difference between EM and gravity is that gravity is always
attractive, as supposed to repulsive and attractive forces in EM. This also comes about due to the
difference in sign.

Using ηµν , we can rewrite the wave equation as:

ηµν
∂

∂xµ
∂

∂xν
B = 0 (1.32)

the B is the magnetic field vector, B⃗, unless stated otherwise. To see it explicitly, we can
simply expand the indicies:

ηµν
∂

∂xµ
∂

∂xν
B = η00

∂2

∂x02
B + η11

∂2

∂x12
B + η22

∂2

∂x22
B + η33

∂2

∂x32
B

= − 1

c2
∂2B

∂t2
+
∂2B

∂x2
+
∂2B

∂y2
+
∂2B

∂z2
= 0 (1.33)

Which can be re-written as:

1

c2
∂2B

∂t2
= ∇2B (1.34)

Once space-time are unifies as four-vectors, we can use a similar trick for charge density and
current density:

jµ ≡ (cρ, J⃗) (1.35)

This is known as the four vector electric current. The obvious question to ask now is how
to unify the electric field E and the magnetic field B in this same way. It is not so obvious
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however, as in total there are six independent components for them (i.e Ex, Ey, Ez and same for
B), so we can’t use a four vector. The next thing to try is a matrix (a rank two tensor). But a
rank two tensor with two indicies, Fµν , has 16 components, and we only need 6, so it is far too
many. To restrict the number of components, we can impose a condition on the matrix that it is
antisymmetric:

Fµν = −Fνµ (1.36)

This means that it only has 6 independent components as:

Fµµ = −Fµµ ≡ 0 ∀µ (1.37)

This implies that all diagonal elements are zero, which leaves 12 components. Now if one
imposes the condition:

Fµν = −Fνµ ∀µ ̸= ν (1.38)

then there are only 6 independent components as half of them are related to the other half by
a minus sign. So we can define the antisymmetric tensor for the electric and magnetic fields, also
known as the field strength tensor, is defined as:

Fµν ≡


0 −Ex

c −Ey
c −Ez

c
Ex
c 0 Bz −By
Ey
c −Bz 0 Bx
Ez
c By −Bx 0

 (1.39)

So the components are:

F0i = −Ei
c

Fij = ϵijkBk (1.40)

One has to be careful with indicies that are covariant (at the bottom) or contravariant (at the
top). To convert from covariant to contravariant and vice-verse we can define:

ηµν ≡ (ηµν)
−1

(1.41)

So when we contract them:

ηµαηαβ = δµβ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.42)

which means we construct the wave operator as:

ηµν∂µ∂ν = ∂ν∂ν

∂ν = ηµν∂µ ≡
(
−1

c

∂

∂t
+∇

)
(1.43)

In the same way:

jµ = ηµνj
µ

= jν ≡
(
−ρc, J⃗

)
(1.44)

Fµα = ηµβFβα (1.45)

Fµν = ηµαηνβFαβ (1.46)
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So the raising and lowering the indices simply changes the sign of the time components (de-
pending on ths signature of the η of course).

Using all the tools, we can write Maxwell’s equations as follows:

Claim 1. Equations 1.12 and 1.15 can be combined into:

∂µF
µν = −µ0j

ν (1.47)

Proof 1. Begin with the µ = 0, temporal index:

∂0F
0i = −µ0j

i as F 00 = 0 and i ∈ {1, 2, 3} (1.48)

Combining this with Eq 1.35 gives:

Ėi
c

= µ0J⃗ (1.49)

And a similar procedure has to be followed to obtain the remaining terms.1

A similar long winded procedure can be used to prove:

∂αFβγ + ∂βFγα + ∂F αβ = 0 (1.50)

incorporates equations 1.13 and 1.14 of Maxwell’s equations. This can be written as:

∂[αFβγ] = 0 (1.51)

The square bracket means the indicies are anti-symmetrised, which means:

∂[αFβγ] =
1

6
(∂αFβγ + ∂βFγα + ∂γFαβ − ∂αFγβ − ∂βFαγ − ∂γFβα) (1.52)

But F is anti-symmetric, therefore:

∂[αFβγ] =
1

3
(∂αFβγ + ∂βFγα + ∂γFαβ) = 0 (1.53)

Which is equivalent to the statement in Eq 1.50. Sometimes Eq 1.50 is also written in yet
another way:

ϵµνρα∂νFρα = 0 (1.54)

2.4. Electric and magnetic potentials. The electric field, ϕ, is a scalar and is defined as:

E⃗ ≡ −∇ϕ Time-independent case (1.55)

The magnetic potential, A⃗, is a vector and is defined as:

B⃗ ≡ ∇× A⃗ (1.56)

They are combined together to form a four vector potential:

Aµ ≡
(
ϕ

c
, A⃗

)
=

(
ϕ

c
,Ax, Ay, Az

)
(1.57)

Then the EM field strength tensor, Fµν can be written as:

Claim 2.

Fµν = ∂µAν − ∂νAµ (1.58)

1One of the problems with any tensor formulation of equations is that they are highly tangled up and unpacking
them usually takes a long time. This is why Einstein’s field equations are so difficult to solve.
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Proof 2. First consider the temporal component of Eq 1.58:

F00 = ∂0A0 = ∂0A0 = 0 (1.59)

The spatial components:

F0i = ∂0Ai − ∂iA0 (1.60)

Which can be written in component form as:

E⃗

c
=
∂A

∂t
−∇ϕ1

c
(1.61)

Which implies:

E⃗ = −∇ϕ (1.62)

and

∂A⃗

∂t
= 0 Time independent case (1.63)

Similarly, one can prove the remaining components aswell.

Eq 1.58 is of fundamental importance, not just in EM, but also in all of physics. This is
because it is the first equation that shows how the concept of gauge invariance comes about. To
see how this works, consider the transformation:

Aµ → Aµ + ∂µχ (1.64)

This will leave Fµν invariant (as the partial derivatives commute and both terms in Eq 1.58
will give equal and opposite terms that will cancel) and hence the equations of motion invariant.
In fact this also leads on to gauge symmetries of the Standard Model of particle physics.

Finally, the Lorentz force:

F⃗ = q(E⃗ + v⃗ × B⃗) (1.65)

To express this in terms of four vectors lets write down the equation of force:

Claim 3. Using Newton’s second law:

m
∂2xµ

∂τ2
= qFµν

∂ν

∂τ
(1.66)

Proof 3. Lets start with the temporal components:

m
∂2x0

∂τ2︸ ︷︷ ︸
≡0

= qF 0
ν

∂xν

∂τ

0 = qF 0
i

∂xi

∂τ

0 = qF 0
i v⃗ ⇒ v⃗ ≡ 0 (1.67)

The spatial components are:
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m
∂2xi

∂τ2
= qF iν

∂xν

∂τ

ma⃗ = qF iν
∂xν

∂τ

= qF i0
∂x0

∂τ︸︷︷︸
≡1

+qF ij
∂xj

∂τ

= qE⃗ + q(B⃗ × v⃗) (1.68)

3. Lorentz Symmetry

Lorentz symmetry was first discovered by Lorentz(hence bears his name), and was first seen
as a mathematical property of Maxwell’s equations. However, it was Einstein who realised that
this was not just a property, but also a fundamental feature of our universe. The symmetry is
defined by a a change of space-time coordinates:

xµ(ct, x⃗) :→ xµ′ = (ct′, x⃗′) ≡ Λµνx
ν (1.69)

This is a linear transformation, where Λµν is a transformation matrix. Under this transfor-
mation, the Maxwell equations are invariant. Similarly one can also have transformations in the
other EM quantities:

A′µ = ΛµνA
ν

j′µ = Λµν j
ν

F ′µν = ΛµαΛ
ν
βF

αβ (1.70)

These equations can be solved for the primed reference frame, or the unprimed reference frame
if the transformation matrices Λµν is invertible:

xν = Λ̃νµx
′µ Such that Λ̃νµ ≡ (Λµν )

−1
(1.71)

This can also be used to write down the transformations for derivatives:

∂

∂x′µ
=

∂xα

∂x′µ
∂

∂xα

= Λ̃αµ
∂

∂xα
(1.72)

So we see that covariant indicies transform with Λ̃ and vice-verse. It is immediately obvious
that contracted indicies do not transform at all (as the covariant index will transform under Λ̃

and indicies with Λ, thus the expression has ΛΛ̃ ≡ I).

Now recall:

Fαβ = ηαδηβγFδ,γ (1.73)

To check that the Lorentz transformation:

F ′αβ = ΛαγΛ
β
δF

γδ (1.74)

leaves Maxwell’s equations invariant, the transformation of the η’s, under the Lorentz trans-
formations, needs to be worked out. The condition on η is obviously that they need to be Lorentz
invariant:
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ηαβ = ηγδΛ̃
γ
αΛ̃

δ
β

ηαβ = ΛαγΛ
β
δ η

γδ (1.75)

These conditions define Lorentz transformations, i.e matrices that satisfy Eq 1.75 are Lorentz
transformations and the set of all matrices that satisfy this condition form the Lorentz group.

An example is of a Lorentz transformation is via an orthogonal matrix, Oij (say).

Claim 4. The length of any vector in 3-D is invariant under an orthogonal transformation
matrix, Oij :

x′i = Oijxj ⇒ |x⃗| ≡ |x⃗′| (1.76)

Proof 4. Take the starting point as the length of the primed vector:

|x⃗′|2 ≡ x⃗′†x⃗

= x⃗†O†O︸︷︷︸
≡1

x⃗

= x⃗†x⃗

≡ |x⃗|2 (1.77)

Lorentz transformations are analogous to the one above, the only difference is the η which has
a minus sign in the temporal components. We can re-write Eq 1.75 as:

ΛT ηΛ = η (1.78)

As an example for this Λ matrix, consider an orthogonal matrix:

Λαβ =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (1.79)

This is a rotation matrix for the x, y coordinates and we can see that by defining a 2 × 2
matrix:

O ≡
(

cos θ sin θ
− sin θ cos θ

)
(1.80)

and OOT ≡ I, which implies that:

(x′, y′) = O

(
x
y

)
(1.81)

Which of course give the equations:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ (1.82)

Geometrically the rotation is given by Figure 1. This is the simplest example of a Lorentz
transformation. More interesting Lorentz transformations take space into time, such as:

Λµν =


cosh θ − sinh θ 0 0
sinh θ cosh θ 0 0
0 0 1 0
0 0 0 1

 (1.83)

This gives the transformation equations:
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ct′ = ct cosh θ − x sinh θ (1.84)

This is also a linear transformation on the coordinates, but it is not a rotation due to the
hyperbolic functions. Geometry is shown in Figure 2

Figure 1. Geometry of transformation for Λαβ matrix

Figure 2. Geometry of transformation for Λµν matrix. The dashed orange lines
are lines of constant x′, the dashed blue lines are lines of constant t′.
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Now, the x′ axis, is by definition where t′ = 0. Therefore x′ axis is defined by the condition:

ct cosh θ = x sinh θ ⇒ ct = x tanh θ (1.85)

This represents a straight line with a constant gradient that is less than 1 (as tanh θ < 1),
likewise ct′ axis is where x′ = 0, so we get:

ct = x coth θ (1.86)

which is a straight line with gradient that is larger than 1, in fact the slopes of both lines are
the inverse of each other, i.e if the gradient of ct’ axis 6, then the gradient of the x′ axis is 1

6 and
so on. This kind of Lorentz transformation is called a boost.

The physical meaning of the new coordinates is that the ct′ axis is the locus of an observer
who is in the primed reference frame. In the original coordinates, this observer is located at:

x = tanh θct⇒ tanh θ =
v

c
(1.87)

one often defines:

−∞ < θ <∞ (1.88)

as the rapidity. So if θ is known, the relation to all other hyperbolic functions is also known:

cosh θ =
1√

1− tanh2 θ

=
1√

1− v2

c2

(1.89)

sinh θ =
v
c√

1− v2

c2

(1.90)

We also define the usual γ factor as:

γ ≡ 1√
1− v2

c2

(1.91)

Therefore, the Lorentz transformations are given by:

ct′ = γ
(
ct− vx

c

)
x′ = γ(x− vt)

y′ = y

z′ = z (1.92)

Since:

ηµνx
′µx′ν = ηµνx

µxν (1.93)

The length of a space-time vector is invariant under the Lorentz transformations:

x2 = x′2 (1.94)

This is often called the proper distance (also called a space-time interval) and this is invariant
under Lorentz transformations (but ordinary time and spatial intervals are not). Any observer
will also agree on what is in the past and the future, this is known as the concept of causality.
Is it preserves the fact any action follows a cause, for example no observer will ever see a ball
being struck in a cricket match before the ball has been delivered. To summarise, the concept of
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simultaneity is no longer valid for different reference frames, as observes will see events happening
at a different time to each other, however the order of events will always be the same and this
conservers causality.

3.1. Clocks and meter sticks. Now lets work out two of the most famous consequences in
special relativity, which are time dilation and length contraction.

Time Dilation

Figure 3. Space-time diagram showing ticks on a clock

Consider a clock at x = 0. We want to see how the clock ticks in a different, primed coordinate
system. In the primed coordinates we will see that the value of the ticks of the clocks is becoming
more negative in the x axis. This is intuitively obvious; as the observer moves away from the clock,
the clock is at a more negative distance from the observer. The interesting question is weather
the time interval measured on the clock is the same in both reference frames. Suppose the time
interval in the unprimed frame is T , then the ticks in the unprimed frame are:

Tick ct x
1 0 0
2 cT 0
3 2cT 0

Table 1. Ticks in the unprimed frame
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In the primed reference frame:

Tick ct’ x’
1 0 0
2 γcT -γvT
3 2γcT - 2 γvT

Table 2. Ticks in the primed frame

So the space coordinate for the first tick is at −γvT , which is negative as expected, but
looking at it carefully, γT ≡ T ′, therefore x′ for the first tick is at −vT and similarly the temporal
coordinate for the first tick is at cT ′, the fact that:

γT = T ′ (1.95)

is called time dilation. In other words, the time interval observed in a moving frame will be
longer than in a stationary frame. This follows straight from the fact that the speed of light is a
constant in a stationary reference frame. So the fact that an observer is moving relative to the
clock, does not mean the velocities of the light ray and the moving reference frame add according
to Galilean transformations, instead they follow relativistic addition of velocities.

Meter sticks

Figure 4. Space-time diagram of a meter stick. Red line shows the length of
rod in the primed reference frame, L′. Blue line shows the length of the rod in
the unprimed reference frame, L

As was done for the clock, one must now ask what is the length of the stick as measured by an
observer in a moving primed reference frame. Lets look at the two ends of the stick both frames:
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Unprimed frame Primed frame
Left end (End 1) x1 = 0, t1 = ct x′1 = −γvt ≡ −vt, t′1 = γt
Right end (End 2) x2 = L, t2 = ct x′2 = γ(L− vt), t′2 = γ

(
t− vL

c2

)
Table 3. Coordinates of meter stick in both reference frames.

let t′2 = 0, to see the length of the stick in the primed frame, we simply solve for t, under this
condition:

t =
vL

c2
(1.96)

Now we can use this relation to find out how the lengths of the stick changes in both reference
frames. If we take End 1 of the stick to be at the origin, then the coordinate x′2 represents its
length in the primed frame:

x′2 ≡ L′ = γ (L− vt)

= γ

(
L− v

(
vL

c2

))
= γL

(
1− v2

c2

)
=

L

γ
(1.97)

which is smaller than L, which means that in the primed frame, sticks appear smaller than
in the unprimed reference frame. At first there appears to be a contradiction between the two
observers. The observer in the stationary frame, O1, will say that the observer in the moving
frame, O2, has a watch that ticks slower. On the other hand O2, will say that his/her watch is
ticking at the rate of 1 second per 1 second, and that the watch on O1 is ticking slower.

So what is the real answer...? The answer is, that they are both correct. It is easier to see
how the contradiction disappears from the geometry of the situation. For the information that
follows, refer to Figure 5:

Observer 1 measures Observer 2 measures
Time interval for O1 Yellow line without arrow Green line with arrows
Time interval for O2 Yellow line with arrows Green line without arrows

Table 4. Time intervals measured by both observer’s for each other in their
respective frames of reference

One has to be careful here, it is not the distance on the axis that gives rise to the Lorentz
contraction and time dilation. Instead it is the space-time intervals that need to be used, as it is
these that are invariant under Lorentz transformations:

c2t2 − x2 = c2t′2 − x′2 (1.98)

The space-time intervals are hyperbolic curves. The same procedure can be followed for the
length in both reference frames to look at the effect of length contraction(i.e draw the lines of
constant x, x′, t, t′ and find the intersect to the world line of End 2 in the Figure 52). Following
the same logic will show that both the observers will be correct when they saw that the length is

2This is left to the reader as drawing more lines in Figure 5 would make it look more messy!
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increasing in the reference frame of the other. This shows the confusing yet profound consequences
of the speed of light being a constant in each reference frame and is at the heart of the theory of
special relativity.

Figure 5. The geometry of time dilation and length contraction

4. Relativistic mechanics

Mechanics has been about describing the trajectory of particles given a force and some initial
conditions. This has been the case for Newtonian mechanics and is no different in relativistic
mechanics. Suppose T is some trajectory of a particle in space-time, and it can be parametrised
by our coordinates xµ and some parameter λ. In general, λ must be a Lorentz invariant quantity,
and a good quantity to use the proper time that describes the flow of the trajectory.

At each point one can define a parametric, 4-velocity:
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Parametric 4-velocity =
∂xµ

∂λ
(1.99)

this simply shows how the coordinates change with λ. So now we can define a length element
as:

ds2 = ηµν
∂xµ

∂λ

∂xν

∂λ
dλ2 (1.100)

There are certain classifications that ds falls under and they are as follows:

• If ds2 > 0, we call the trajectory space-like. There are no particles in nature that have
space-like trajectories since that would involve moving faster than the speed of light
(there exist hypothetical particles in some theories, like string theory for example, that
travel faster than the speed of light).

• If ds2 = 0, it is called a light-like trajectory. These are all particles that are mass-less
and hence travel at the speed of light.

• If ds2 < 0, the trajectory is called time-like. These are all massive particles.

The type of trajectory is always the same in any coordinate system. For time-like trajectories,
we define:

c∂τ ≡=
√
−ηµν∂xµ∂xν (1.101)

This quantity is Lorentz invariant and the expression above can be re-written to get it in a
more familiar form:

∂τ =
1

c

√
−ηµν

∂xµ

∂t

∂xν

∂t
dt

= dt

√
1− 1

c2

(
∂xi

∂t

)2

= dt

√
1− v2

c2
=
dt

γ
(1.102)

4.1. 4-velocity. Define:

uµ =
∂xµ

∂τ

=
∂xµ

∂t

∂t

∂τ
= γ(c, v⃗) (1.103)

Therefore:

uµuµ = −c2 (1.104)

4.2. 4-momentum. Particle mass depends on velocity as follows:

m = γm0 (1.105)

The proof is quite long and is worth doing once; it is found in many resources like [2]3.
The four momentum, pµ, is given by:

3Having just worked through it, it is not worth typing up!
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pµ = m0u
µ

= (γm0c, γm0v⃗)

= (mc,mv⃗)

=

(
E

c
, p⃗

)
(1.106)

Therefore:

p2 = pµpµ = mc2 (1.107)

This is a Lorentz invariant quantity and proves to be very useful in all areas from physics,
especially in particle physics, when the kinematics of colliding particles in considered as m, also
known as the invariant mass of a particle, is the same in all frames and hence be used in working
out unknown quantities in different reference frames. For example, in a the rest frame, where
γ ≡ 1:

p2 = pµ(rest)pµ(rest) = −m2
0c

2 (1.108)

In other frames:

p2 = pµ(other)pµ(other) = −E
2

c2
+ |p⃗|2 (1.109)

Since p2 is a Lorentz invariant quantity, Eq 1.108 and 1.109 and be equated to give:

E = c
√
p⃗2 +m2

0c
2 (1.110)

Which can be further simplified:

E⃗ = m0c
2

√
1−

( p

mc

)2
= mc2

(
1 +

1

2

p2

mc2

)
= m0c

2︸ ︷︷ ︸
Restmass

+
1

2

p2

m0︸ ︷︷ ︸
KE

(1.111)

This works even for m0 = 0 as then:

E = c|p⃗| (1.112)

which is just the energy of a photon.

4.3. Dynamics. Newton’s laws are the starting point for the dynamics in relativity aswell.
The difference comes in the formalism of four vectors; the four vector force can now be defined in
terms of the four vector momentum as:

Fµ =
∂pµ

∂τ
(1.113)

An example is the one looked at while discussing EM and its the Lorentz force. The Lorentz
force, in terms of four vectors can be written as:

Fµ = qFµνuν (1.114)

where Fµν is the usual field strength tensor. Let’s explicitly do a calculation to see how this
formalism works for forces. Consider:
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F.u = ηµνF
µν

= νµνu
µ ∂p

µ

∂τ︸︷︷︸
Fµ

(1.115)

But pµ = mou
µ, therefore:

F.u = ηµνu
ν ∂(m0u

µ)

∂τ
(1.116)

Use chain rule:

F.u = ηµνu
ν ∂m0

∂τ
uµ + ηµνu

ν ∂u
µ

∂τ
m0

= ηµνu
ν ∂m0

∂τ
uµ + (ηµνu

ν)
∂uµ

∂τ
m0

= ηµνu
ν ∂m0

∂τ
uµ − uµ

∂uµ

∂τ
m0 (1.117)

Since derivatives compute both terms of the R.H.S can be simplified:

F.u = ηµνu
ν ∂m0

∂τ
uµ − ∂

∂τ
(uµu

µ)︸ ︷︷ ︸
c2

m0

= ηµνu
ν ∂m0

∂τ
uµ

= ηµνu
νuµ

∂m0

∂τ

= −c2 ∂m0

∂τ
(1.118)

This means that if the motion is along the line of the force (or any components of the motion
are along the line of force) then the rest mass varies with time. When though about carefully, this
makes sense as the rest mass is a source of energy and we expect energy to change (work is done)
when a force acts along the direction of motion. This is not the case for electromagnetic forces. If
the Lorentz force is multiplied by u:

Fu = quµuνF
µν (1.119)

But since uµuν is symmetric in µν and Fµν is anti-symmetric in µν, Fu ≡ 0. This means EM
forces do not change the energy of particles they act on, which is another peculiarity of Maxwell’s
equations.





CHAPTER 2

Introducing gravity

1. Motivating general relativity

Let’s go back to the time at which Einstein was thinking about how to generalise his theory.
He started to think about the geometry of space-time and gravity and how they might be linked,
immediately after completing his work on special relativity.

Einstein wanted to find a field theory for gravity that superseded Newton’s theory, as the classical
gravity was inconsistent with special reativity. This is immediately obvious from the equation of
Newtonian gravitation force:

F⃗(gravity) =
Gm1m2

r⃗3
ˆ⃗r (2.1)

There is no time dependence in the equation, which implies that the force was transmitted
instantaneously. This obviously contradicts special relativity and its causal structure. Einstein
wanted to eliminate this ”spooky action at a distance”. But gravity was not the only thing at the
time that was described by such an equation. Coulomb’s law for electro-static forces had exactly
the same form:

F⃗(Coulomb) = k
q1q2
r⃗3

ˆ⃗r (2.2)

Again this violated causality. But this was just static limit of the EM fields that were described
fully by Maxwell’s equations. This is what motivated Einstein into thinking that maybe the
Newtonian gravity is also a static limit for a more general field theory for gravity.

1.1. Relativity of space-time: Newton’s Bucket. Another thing he did not agree with
was the absolute nature of space and time, a view that had been promoted by Newton and had
been accepted for over three centuries. This was not the accepted view before Newton however,
Aristotle(arguably the greatest philosopher of all time) and Descartes held a view of relativity
himself. Their views were much more local and specific than the view that Einstein would even-
tually come up with. They believed that it was not sensible to quantify things in an absolute
way. The only reality of a physical object was in its relation to other surrounding physical objects.
The same arguments can be applied to motion as well as space. To describe his view on absolute
space-time, Newton came up with a thought experiment.

• Imagine that you have a bucket full of water.
• The bucket is then attached to a chord and then the chord is twisted around itself several

times.
• If the chord is then released it will rotate and along with it so would the bucket.
• The water in the bucket would not start rotating immediately but it would start rotating

after a few seconds due to the friction between the bucket and the water.
• When the water starts to rotate it forms a concave shape. In other words the concave

shape of the water implies a rotation, but what is the rotation in reference to? i.e rotation
with respect to what?

If Descartes views were correct and the motion had to be relative to some nearby objects,
then the obvious object to use a reference would be the bucket as it is what contains the water.
However this cannot be true as in the beginning when the bucket was rotating and the water was
not rotating, their is still some relative motion, yet the water does not form that concave shape.

23
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Moreover, after a certain amount of time, one would expect the water to be rotating at the same
speed as the bucket, so their would be no relative motion, yet the concave shape would remain.
Therefore the water cannot be relative to the bucket.

Newton argued that this implied the existence of absolute space to which the water was in relative
motion with. This argument of Newton held strong for over 300 years.

In the 19th century, Mach made an argument that the bucket and the water rotated with re-
spect to all of the other matter in the universe. In other words its the motion relative to the
distance stars that caused the concave shape. This is obviously not true, as it implies that if there
was just a universe with the bucket and the water and the bucket was rotated the water would
not rotate. Moreover, it also violates causality, as it implies that the presence of matter billions
of light years away can cause the water to rotate!

Einstein obviously did not like the concept of causality in Mach’s argument; his, correct, view
was that the motion was relative to the local gravitational field. This would prove to be of funda-
mental important to his theory of gravity, because Einstein had stumbled upon a very profound
fact that the classical Newtonian (in this case centripetal) acceleration was linked to gravity.

2. Equivalence principle

This principle is probably the most fundamental insight into our universe that general relativity
gives us (and it also solves the problem of Newton’s bucket!). In comes from an observation that
all bodies in a given gravitational field experience the same acceleration. The connection between
acceleration and gravity is as obvious(well it is now, as I said, hindsight is a wonderful thing!) as
it is profound. Newtonian force is given by:

F = mI a⃗ (2.3)

where mI is the inertial mass, it is simply the resistance of acceleration to the force. In a
uniform gravitational field, we know:

F = mg g⃗ (2.4)

where mg is the gravitational mass, which couples gravitational pull to the force. In principle
mI and mg can be two different quantities, however experiments show that:

mI = mg (2.5)

to a very high precision, which implies:

a⃗ = g⃗ (2.6)

This is known as the equivalence principle. To explain this Einstein created a thought exper-
iment. Imagine a person in an elevator, if the person feels a force downwards there is no way to
determine weather the force is caused by acceleration upwards of the elevator or by a gravitational
force pulling on the elevator. A consequence of this is known as red-shift.

2.1. Newtonian gravitational red-shift. This is a more ad-hoc derivation of the red-shift.
A more rigorous derivation will follow in upcoming sections. Consider again an elevator that is
initially on the ground and is being accelerated upwards (same as being pulled down by gravity).

Suppose a torch light emits a light ray from the bottom of the elevator, by the time it reaches the
top of the elevator, the elevator itself has moved up a distance 1

2gt
2 and the final velocity is gt.

The distance traveled by the light is:

ct = ∆h+
1

2
gt2 (2.7)

and the final velocity is:



2. EQUIVALENCE PRINCIPLE 25

v = gt (2.8)

Figure 6. Elevator motion

we expect t << 1 and g is relatively small at the surface of the earth, so we can neglect the
second term in Eq 2.7 and solve for it for t and substitute this into Eq 2.8:

v = g
c

∆h
(2.9)

So the four wave-vector vector of the light at the bottom of the elevator is:

kµ =
(ω
c
, 0, 0,

ω

c

)
(2.10)

here it is assumed that the motion is only in the z direction. At the top it is:

kµ′ =

(
ω′

c
, 0, 0,

ω′

c

)
= γ

ω

c
(1− β)(1, 0, 0, 1) (2.11)

Therefore:

ω′ = γω(1− β) (2.12)

if β << 1:

ω′ ≈ ω(1− β) (2.13)

Substitute Eq 2.9 into 2.13:
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ω′ = ω

(
1− ∆hg

c2

)
(2.14)

So now a quantity can be defined as the gravitational redshift, z:

z =
ω′ − ω

ω

=
ω′

ω
− 1

= −∆hg

c2
(2.15)

Note that this is negative, so the frequency of light at the top of the elevator is smaller than
at the bottom. Physically this makes sense as a light photon will have to climb up a gravitational
potential well in order to move up and therefore it must loose energy and since energy is propor-
tional to ω (another thing Einstein showed with the photo-electric effect) ω must also decrease.
Hence photons are shifted towards the red end of the spectrum, which is why the effect is called
red-shift.

The time period of the wave is inversely proportional to its frequency:

∆τ ∝ 1

ω
(2.16)

This means that if one is in a strong gravitational field, the time, τ , will go slower (as ω will
increase).

2.2. Bending of light: The Geodesic equation. Suppose the same elevator is moving
upwards and a light ray is emitted from one of the walls of the elevator towards the other wall
such that the light intersects the other wall at right angles. If the elevator is stationary, then the
light ray will intersect the other wall at right angles as viewed by an observer in the elevator and
by any external observer outside the elevator.

Once the elevator is in motion, the light ray will still appear to intersect the other wall at right
angles as viewed by the observer in the elevator as it has no relative motion with respect to the
light ray. However, to an external observer, the light will no longer appear to intersect the other
wall at right angles. Instead, the light ray will appear to take a curved path towards the other
wall. More specifically, the light ray is curved downwards. This is a general principle, the light
rays are bent towards the gravitational field. The consequence is actually more profound that this;
the photons path is not the thing that actually changes, it is infact the space-time itself that is
changing. The space-time is bent by gravitating objects (massive, energetic objects) and particles
follow geodesics (straight lines) in these new geometries.

The effect of gravity can be removed by moving into a freely falling reference frame, i.e the
elevator accelerates at the same rate as g⃗ is pulling down. In this case one would not observe the
bending of light as this would be an inertial frame.

To analyse how the space time is bent around by gravitating objects, the geodesic equation needs
to be introduced. For simplicity lets set c = 1, as is the convention in general relativity theory.
First let’s formalise the phenomena of light curving in non-inertial (accelerating frames).

• Define:

Local coordinates = ξµ (2.17)

These coordinates are freely falling, i.e an inertial frame
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• Define:

Global coordinates = xα (2.18)

These are coordinates for an external observer.

In general, xα and ξµ are related by a coordinate transformations:

xα = xα(ξµ) (2.19)

An example is a static observer on the surface of the earth observes xα coordinates. In an
inertial frame, we expect the rules of special relativity to apply, hence the equation of motion in
the absence of any forces would be:

∂2ξµ

∂τ2
= 0 (2.20)

Thus the solution for the trajectory would be a straight line:

ξµ = mx⃗+ c m, c ∈ {R} (2.21)

The next step is to find the trajectory in the global coordinate system; first let’s use the chain
rule:

∂ξµ

∂τ2
=

∂

∂τ

(
∂ξµ

∂xα
∂xα

∂τ

)
=

∂ξµ

∂xα
∂2xα

∂τ2
+

∂2ξµ

∂xβ∂xα
∂xβ

∂τ

∂xα

∂τ
= 0 (2.22)

Recall:

∂xν

∂xα
= δνα =

∂xν

∂ξµ
∂ξν

∂xα
(2.23)

Multiply Eq 2.22 by ∂xν

∂ξµ and use Eq 2.23 to get and δ in the first term of the R.H.S on Eq

2.22 that can then contracted:

∂2xν

∂τ2︸ ︷︷ ︸
∂uν

∂τ

+
∂xν

∂ξµ
∂2ξµ

∂xβ∂xα︸ ︷︷ ︸
Term a

∂xβ

∂τ︸︷︷︸
uβ

∂xα

∂τ︸︷︷︸
uα

= 0 (2.24)

Term a has three free indicies as µ is contracted, so it can be defined as an object with three
independent indicies as, Γνβα. which is symmetric in α and β (as swapping the two 4-velocities

does not have any effect). This gives the final form of the equation of motion in any arbitrary
curved space-time:

∂uν

∂τ
+ Γναβ

∂xα

∂τ

∂xβ

∂τ
= 0 (2.25)

This is the geodesic equation. To understand what the Γ′s actually mean, the metric also
needs to be transformed into these curved coordinates. The metric in general is given by:

ds2 = −dτ2 = ηµνdξ
µdξν

= ηµν
∂ξµ

∂xα
∂ξν

∂xβ︸ ︷︷ ︸
gαβ

dxαdxβ (2.26)

This gαβ is known as the metric tensor. Since it is a symmetric 4 × 4 matrix, it has 10
independent parameters or ten components. It is not hard to see now, that if we take a derivative
of gαβ , the structure will be the same as it is for Γναβ . Let’s define an object Γµαβ , such that:
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Γναβ ≡ gνµΓµαβ (2.27)

These Γ’s are called Christoffel symbols;

Γµαβ = Christoffel symbol of 1st kind

Γναβ = Christoffel symbol of 2nd kind (2.28)

Both the Christoffel symbols are symmetric in α and β, so any expansion for it must also be
symmetric in α and β:

Claim 5.

Γµαβ ≡ 1

2

(
∂gµα
∂xβ

+
∂gµβ
∂xα

− ∂gαβ
∂xµ

)
(2.29)

Proof 5. The way to verify this claim is to simply compute the individual components on
the R.H.S and see that they equal the L.H.S:

∂gµν
∂xβ

=
∂

∂xβ

(
ηκσ

∂ξκ

∂xµ
∂xσ

∂xα

)
= ηκσ

∂

∂xβ

(
ξκ

∂xµ
∂ξσ

∂xα

)
= ηκσ

(
∂2ξκ

∂xβ∂xµ
∂ξσ

∂xα
+
∂ξκ

∂xµ
∂2ξσ

∂xβ∂xα

)
(2.30)

But notice:

∂2ξκ

∂xβ∂xµ
=

δκδ︷ ︸︸ ︷
∂ξκ

∂xγ
∂xγ

∂ξδ
∂2ξδ

∂xβ∂xµ

=
∂ξκ

∂xγ
∂xγ

∂ξδ
∂2ξδ

∂xβ∂xµ︸ ︷︷ ︸
Γγβµ

(2.31)

So infact:

∂2ξκ

∂xβ∂xµ
=
∂ξκ

∂xγ
Γγβµ (2.32)

Substituting Eq 2.32 into 2.30:

∂gµα
∂xβ

= ηκσ

(
∂ξκ

∂xγ
Γγβµ

∂ξσ

∂xα
+
∂ξκ

∂xµ
∂2ξσ

∂∂xβ∂xα

)
= ηκσ

∂ηκ

∂xγ
∂ξσ

∂xα
Γγβµ + ηκσ

∂ξκ

∂xµ
∂2ξσ

∂xβ∂xα︸ ︷︷ ︸
Term b

(2.33)

One has to use the same trick as the one used in Eq 2.32 for Term b in the equation above to
obtain:

∂gµα
∂xβ

= gγαΓ
γ
βµ + gµγΓ

γ
αβ (2.34)

The same method needs to be used for the second and third terms in Eq 2.29 to complete the
proof.
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So we see that the geodesic equation for any space-time geometry can be derived using the
equivalence principle. Note that in general the gravitational field is not homogeneous, therefore
the geodesics are not the same for all particles. This means that gravity cannot mimic accelera-
tion, except at a specific point in space. This is infact the key in working with gravitational forces,
one looks for tidal forces on objects as they cannot be produced by an accelerating reference frame.

In general a gravitational force is described by a general metric, gµν , which is not necessarily
related via the same transformation to the flat metric. So in general the line element in space-
time is given by:

ds2 = gµνdx
µdxν (2.35)

This gives the true insight into general relativity; gravity is related to the geometry of space-
time. Moreover, it is also a gauge theory, as the object that defined the curvature is a metric
and a metric is not a physical observable1. Hence any changes made to the metric that leave the
equations of motion unchanged are also equally valid solutions. To be more specific, the physical
observables for a given geometry(metric) are encoded in a Riemann tensor, which contains second
derivatives of the metric.

3. Newtonian limit

In Newtonian gravity, the defining object of a system is its gravitational potential energy,
which is a scalar. In this transition from Newtonian gravity to Einstein’s gravity, we have intro-
duced 10 components (the components of the metric tensor) to define a system! So at first sight
these two theories seem completely incompatible.

However, Newtonian gravity certainly works upto a certain limit. It has got us to the moon
and most space travel only needs Newtonian theory, so how does general relativity approach the
Newtonian limit? To understand this, lets look at the assumptions of Newtonian gravity:

• Slow (non-relativistic) motion: ∣∣∣∣∂xµ∂τ
∣∣∣∣ << ∂t

∂τ
(2.36)

This basically means that time does not change much from proper time. If this is
true, all the velocity terms in the geodesic equations can be neglected:

∂2xµ

∂τ2
+ Γµ00

(
∂t

∂τ

)2

= 0 (2.37)

• Stationary field:

∂gµν
∂t

≡ 0 (2.38)

Therefore:

Γµ00 = −1

2

∂g00
∂xµ

gνµ (2.39)

• Weak field:

gµν = ηµν + hµν +O(h2) (2.40)

This is basically saying that the metric is just the Minkowski (flat) metric with a
small perturbation hµν added to it, i.e the field strength is small.

1In the same that in quantum mechanics the object that carries the information of a system is its wavefunction,
which is not a physical observable hence can be changed by an arbitrary phase factor.
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To make further progress, the inverse of gµν is needed. If the metric is diagonal, the inverse
is simply:

gµν =
1

gµν
(2.41)

Claim 6. In general:

gµν = ηµν − ηµν ≡ (gµν)
−1 (2.42)

Proof 6. Since gµν is claimed to be the inverse, its product with gµν must be the unit matrix,
this can be shown schematically as follows (one can also do the calculation using the contraction
of indices and this will yield the same solution):

gµνg
µν = (ηµν + hµν) (η

µν − hµν)

= ηµνη
µν + hµνη

µν − ηµνh
µν − hµνh

µν

= δ + h− h− (h2)

= δ (2.43)

Look back to Eq 2.39. There are two terms, one contains a derivative and one without; Since
h is small, we keep terms only that are linear in h. So under the weak field approximation, the
derivative of η is obviously zero since it is a constant, hence the only term that contributes in the
derivative will be h:

Γµ00 = −1

2

∂h00
∂xµ

gνµ (2.44)

and since the h2 terms are being ignored:

Γµ00 = −1

2

∂h00
∂xµ

(−hνµ + ηµν)

= −1

2

∂h00
∂xµ

ηµν +
1

2

∂h00
∂xµ

hνµ

= −1

2

∂h00
∂xµ

ηµν (2.45)

Now Eq 2.37 can be written in terms of its separate components as:

µ = 0 ⇒ ∂2x0

∂τ2
+ Γ0

00

(
∂t

∂τ

)2

(2.46)

But:

Γ0
00 = −1

2

∂h00
∂xν

ην0

= 0 ∀ν (2.47)

The last line holds as ην0 ̸= 0 only for ν = 0 and ∂ν ≡ 0 for ν = 0. Therefore:

∂2x0

∂τ2
=
∂2t

∂τ2
= 0 (2.48)

This means:

dt

dτ
= C C ∈ {R} (2.49)

So time flows at some constant rate, which once can always absorb into the definition of τ to
give the proportionality constant as 1. Now for the spatial components we have:
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µ = i(∈ {1, 2, 3}) ⇒ ∂2xi

∂τ2
+ Γi00

(
∂x0

∂τ

)2

= 0 (2.50)

Substitute Eq 2.49 into 2.50:

∂2xi

∂τ2
+ Γi00C

2 = 0 (2.51)

The first term can be expanded using the chain rule:

∂2xi

∂t2
∂t2

∂τ2
+ Γi00c

2 = 0

∂2xi

∂t2
C2 + Γi00c

2 = 0 (2.52)

Substituting Eq 2.45 into Eq 2.52:

∂2xi

∂t2
=

1

2

∂h00
∂xi

(2.53)

In Newtonian gravity, the corresponding relation is:

∂2xi

∂t2
= − ∂ϕ

∂xi
(2.54)

where ϕ is the gravitation potential. By comparing Eq 2.54 to Eq 2.53:

ϕ ≡ −1

2
h00 (2.55)

Now recall that the gravitational potential follows the Laplace equation:

∇2ϕ = 4πGρ (2.56)

and by comparing Eq 2.56 and Eq 2.55:

∇2h00 = −8πGρ

c2
(2.57)

Therefore:

g00 = −
(
1 +

2ϕ

c2

)
(2.58)

where c2 has been put back to get the correct units. Note that ϕ
c2 = GM

c2r << 1, for the
Newtonian approximation to hold. In essence this is the region in which one makes a transition
from the Newtonian to the general relativity regime. As an example, one can look at the value of
ϕ
c2 at the surface of several objects.

Object ϕ
c2 Newton or Einstein?

Proton 10−39 << 1 therefore Newton
Earth 10−9 << 1 therefore Newton
Sun 10−6 << 1 therefore Newton
Neutron star 10−2 − 10−1 Transition regime
Black holes 10−1 − 1 Einstein

Table 5. The gravitational approximation for a range of physical objects
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4. Einstein gravitational red-shift

The derivation presented in section 2.1 is for a weak gravitational field, hence we can assume
a homogenous gravitational field. This is a very specific derivation for the red-shift. For non-
homogenous fields, this needs to be modified. In a strong gravitational field, time slows down. To
see how, look at the proper time:

dτ =

√
−gµν

∂xµ

∂t

∂xµ

∂t
dt (2.59)

In units where c ≡ ~ ≡ 1, the frequency of light in a primed (moving observer) frame and in
an unprimed frame (stationary observer) is given by:

dτ =
1

ν

dτ ′ =
1

ν′
(2.60)

The ratio of frequencies is:

ν′

ν
=

dτ

dτ ′
=

√
−gµν ∂x

µ

∂t
∂xν

∂t dt√
−gµν ∂x

′µ

∂t′
∂x′ν

∂t′ dt
′

(2.61)

Suppose that the observers in both frames are stationary in their respective frames, i.e all
velocities will be 0. The only non-trivial solution will be when µ = 0:

ν′

ν
=

∂τ

∂τ ′
=

√
g00(x)

g′00(x
′)

∂t

∂t′
(2.62)

Next, we assume that the space-time is stationary (i.e geometry not changing with time).
Then it is possible to choose a global coordinate time, so t ≡ t′ and the expression above simplifies
further:

ν′

ν
=

√
g00(x)

g00(x)
(2.63)

This is the gravitational red-shift, which is a more general result than the expression in Eq
2.15. To recover the result of Eq 2.15, first substitute for:

g00(x) = −(1 + 2ϕ′) (2.64)

Therefore:

ν′

ν
=

√
1 + 2ϕ

1 + 2ϕ′
(2.65)

For small ϕ, we can Taylor expand:

ν′

ν
≈ (1 + ϕ)(1− ϕ) (2.66)

The red-shift is defined as usual:
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z =
∆ν

ν

=
ν′ − ν

ν

=
ν′

ν
− 1

= ϕ− ϕ′ (2.67)

If the gravitational field is homogenous, the ϕ = gh:

z = g(h− h′) ≡ g(h− h′)

c2
(2.68)

Which is the same as Eq 2.15.

5. Gravitational field theory

Returning to Einstein’s goal of forming a field theory of gravity. The first thing to ask is,
what are the ingredients of a field theory. The very first field theory has already been discussed,
it was Maxwell’s theory of EM. The first thing one needs is obviously fields. In Maxwell’s theory,
this was Aµ.

The next thing is to find out the dynamics of the field, which is described by an equation of
motion. The equations of motion are generally found by using the Euler-Lagrange equation, once
a Lagrangian for the theory is found. In EM the equation of motion is:

∂pµ

∂τ
= qFµνUν (2.69)

Finally, one needs a field equation; this provides information about how a source of the fields
actually produces the fields. In EM these are just Maxwell’s equations as seen in Eq 1.47 and Eq
1.53. In Newtonian theory, the field is ϕ, the equation of motion for gravity is:

∂p⃗

∂t
= −∇ϕ (2.70)

and the field equation is:

∇2ϕ = ρ (2.71)

where ρ is the mass density.
For Einstein’s theory, the field is gµν and the equations of motion is:

∂2xµ

∂t2
+ Γµαβ

∂xα

∂t

∂xβ

∂t
= 0 (2.72)

The field equation is actually a set of equations called Einstein’s field equations:

Gµν = 8πTµν (2.73)

which will now be derived. Tµν is the source of the field and is known as the stress energy
tensor, and since the field in this case is the metric tensor and the metric tensor represents the
geometry; we see that the source of the field gives rise to curvature of space-time and this is the
corner stone statement of general relativity.



34 2. INTRODUCING GRAVITY

Maxwell Newton Einstein
Field Aµ ϕ gµν

Equation of motion ∂pµ

∂τ = qFµνUν
∂p⃗
∂t = −∇ϕ ∂2xµ

∂τ

2
+ Γµαβ

∂xα

∂τ
∂xβ

∂τ = 0

Field equations ∂µF
µν = −µ0j

ν and ∂[µFνα] = 0 ∇2ϕ = ρ Gµν = 8πTµν

Table 6. Summary of classical field theories



CHAPTER 3

Curved space-time: Riemannian geometry

Everything that has been described so far has been in terms of special cases or in the limit
of weak fields etc. The true power of Einstein’s theory comes from its geometry and some of the
previous results will be re-derived in a more general way in this chapter, as well as providing the
mathematical tools for working with curved space-time.

1. Manifolds

A manifold looks like flat space ”locally”, i.e it has the differential structure of Rn locally, but
is does not, in general have its global properties. Its formal definition is:

Definition 1. A manifold is a set of points together with a collection of subsets, {Oα} such
that:

(1) Each point, p ∈M(Manifold) lies in at least one of the subsets Oα; which implies {Oα}
covers the entire manifold.

(2) For each α, there is a one to one, onto map, ϕα, which takes Oα to another subset Uα,
where Uα is an open subset of Rn

(3) If any two sets Oα overlap; Oα∩Oβ ̸= 0, then the map ψβ ·ψ−1
α is infinitely differentiable,

C∞.

Figure 7. Manifold with subsets mapping to Rn

35
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From Oβ , there is a map ψβ which goes to Rn (n = Dim(M)) into an open subset Uβ in Rn
space. There is a similar map for Uα in Rn from Oα in M . The overlap region could be separated
into the Uα and Uβ regions so to combine it, one would have to do the transformation:

ψα · ψ−1
α or ψβ · ψ−1

α (3.1)

So ψβ · ψ−1
α takes a point in Rn and moves it to another point in Rn, so it must just be an

ordinary (multidimensional in general) function that is infinitely differentiable. To summarise,
Manifolds are made of pieces that look like open subsets of Rn, which are smoothly sewn together.

Definition 2. ψα is called a chart (usually in mathematical literature) or coordinate system
(usually in physics literature). Sometimes one would just write xµ, instead of ψα as it represents
the coordinate system.

Definition 3. A collection of maps, {Oα, ψα}, is usually called an atlas

Example 1. A simple example of a manifold is Rn. It satisfies all the properties in the
definition of a manifold and the proof is trivial.

Example 2. A sphere in n dimensions, Sn; defined by the equation:

Sn = {(x1, x2, ..., xn) ∈ Rn|x21 + x22 + ...x2n = 1} (3.2)

Example 3. As a more concrete example, consider the 2-sphere embedded in a 3 dimensional
Euclidean space. The general Eq 3.2 now becomes:

S3 = {(x1, x2, x3) ∈ R3|x21 + x22 + x23 = 1} (3.3)

We can define a set of maps to form an atlas. There are many ways to choose the set of maps,
as an example lets consider the following six maps, {M1,M2...M6} that form an atlas for this
2-sphere:

• This covers the entire northern hemisphere:

M1 : {(x1, x2, x3) ∈ S2|x3 > 0} (3.4)

• This covers the entire southern hemisphere:

M2 : {(x1, x2, x3) ∈ S2|x3 < 0} (3.5)

• This covers the entire west hemisphere:

M3 : {(x1, x2, x3) ∈ S2|x1 > 0} (3.6)

• This covers the entire northern hemisphere:

M4 : {(x1, x2, x3) ∈ S2|x1 < 0} (3.7)

Note that this still does not cover the entire sphere. There are two points (0,1,0)
and (0,-1,0) on the equator that are not covered by these maps. Thus these two maps
need to be specified separately:

• Covers the point (0,1,0):

M5 : {(x1, x2, x3) ∈ S2|x1 = x3 ≡ 0, x2 = 1} (3.8)

• Covers the point (0,-1,0):

M6 : {(x1, x2, x3) ∈ S2|x1 = x3 ≡ 0, x2 = −1} (3.9)

There is infact a much better way to parametrize the maps, which is in terms of stereographic
coordinates, which only requires two maps.
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Example 4. A sheet in 2 dimensions with a 1-D chord bisecting the plane of the sheet
perpendicularly is not a manifold. To see why, lets define a subset, {Achord}:

{Achord} = Set of all points on the chord (3.10)

and a subset {Aplane}:

{Aplane} = Set of all points on the plane (3.11)

Now, it is not possible to construct a 1 to 1 mapping; Achord 7→ Aplane, since the dimensions
of the chord and the plane are not the same.

Example 5. A Riemann surface of genus g, is essentially a two-torus with g holes defining its
topology (as supposed to one hole for a ”normal” torus). A torus with genus 1 is also a manifold.

Figure 8. Torus with genus 1 manifold

Example 6. If a cone is connected to another cone as shown in Figure 9, it is also not a
manifold due to the apex point where the two cones intersect. This is because at the point, the
mapping from the manifold to Rn is not C∞.

Figure 9. This structure is not a manifold due to the point at the apex.
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General relativity only makes sense on smooth manifolds, as one does not expect or observe
any massive spikes in the curvature of space time from one point to the next. Other theories like
string theory, do not require this condition. This is because strings are 1-D objects, whereas in
general relativity the fundamental particles are taken to be points of 0 dimension. Since a string
is an extended object it can smooth out singularities. The fundamental objects in string theory
are called ”Orbifolds”, for example if one considers an orbifold which is a one dimensional surface,
with a point of origin, say 0. The orbifold can be parametrized by a variable, say x, and every
point x will have a one to one mapping to every other point −x expect the origin point 0. So
this point becomes singular and is a problem for point like particles in this manifold. However,
a string can simply avoiding that point by going over that point and joining the manifold at two
points x1 and −x1.

Figure 10. String on orbifold

Returning to manifolds, if there is a map that takes one manifold M to another manifold M ′;
f :M 7→M ′, where each manifold has a map to Rn via:

ψ :M 7→ Rn

ψ′ :M ′ 7→ Rn (3.12)

This means there is another way to get from M to M ′ via the application of the three maps:

ψ · f · ψ′−1 Takes M 7→M ′ (3.13)

Figure 11. Schematic of mappings to illustrate Diffeomorphism
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Definition 4. If a condition is imposed on Eq 3.13 such that the mapping is C∞, 1 to 1,
onto (i.e all points of the image are covered by the mapping), and the inverse of the derivative
also exists, then the mapping M 7→M ′ is called a Diffeomorphism.

2. Tensors

Tensors can be thought of as actors on the stage of manifolds. If there exists a scalar func-
tion that maps a manifold M to Rn, one can require that the function is independent of the
parametrisation (independent of which coordinate system is chosen):

f(x(p)) ≡ f ′(x′(p)) or f ′(x′) ≡ f(x) (3.14)

This is the key idea behind tensors.

2.1. Tangent vectors. The simplest thing to think about when thinking about vectors is a
directional derivative at a point.

Definition 5. In Rn, a vector vµ has some components in a specific coordinates:

vµ = (v1, v2, ..., vn) (3.15)

For any vector of this form, one can define in a 1 to 1 mapping a directional derivative operator:

v̂ ≡ vµ
∂f

∂xµ
= R ∈ Z (3.16)

For example, if one considers just the 1 dimensional case, with xµ ≡ x, the v̂f(x) will give an
indication of how the function f(x) is changing in the x-direction.

Definition 6. Let F be the collection of C∞ on a manifold M . Then the tangent vector, V ,
at a point p ∈M is a map:

V F 7→ R (3.17)

and it has the following properties:

Linearity ⇒ V (af + bg) = aV (f) + bV (a) (3.18)

Leibniz ⇒ V (fg) = V (f)g(p) + V (g)f(p) (3.19)

Theorem 1. The set of tangent vectors at p ∈ M forms a tangent vector space, Tp(m). The

vector space has the same dimensionality as M , with the basis ∂
∂xµ , so any vector V can be

expressed as a linear combination of the basis vectors:

V = V µ
∂

∂xµ
(3.20)

where V µ represents the components of the vector in the coordinate system that corresponds
to the basis ∂

∂xµ .

This vector can now be written a different coordinate system:

V = V µ(x)
∂x′ν

∂xµ

(
∂

xν ′

)
(3.21)

This gives the transformation for components of the vector into a different coordinate system
is given by:

V
′ν(x′) =

∂x
′ν

∂xµ
V µ(x) (3.22)

Until now the vectors and vectors spaces are defined at a given point, p, in the manifold. This
construction can be extended to the whole manifold by defining a vector field, V.
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Definition 7. Define a collection of all the tangent vectors V at each point p ∈ M , by a
tangent vector field, V:

V ≡ {Vp ∈ TpM, ∀p ∈M, V (f) = Smooth} (3.23)

where Vp is a tangent vector at point p and Tp is a tangent vector space at point p in the
manifold. This collection of vectors on the whole manifold is known as a field. The last condition
in the definition is that the vectors must transform smoothly on the manifold, meaning that if a
vector is pointing ↑, say, at point p1, then at point p2 = p1 + δp1, it cannot point in ↓, say, as
this would involve a jump, which would not be smooth and hence not satisfy the definition of a
manifold.

Definition 8. The set of all TpM , {TpM}, ∀p, is known as a tangent bundle, T (M).

Definition 9. A cotangent vector, ω⃗, at a point p is a map which, for any vector in the
tangent space, assigns a number:

v⃗1 → a1

v⃗2 → a2

v⃗n → an (3.24)

where vn ∈ TpM and n = dim(TpM) and an ∈ R. These cotangent vectors, form a cotangent
vector space, denoted by T ∗

pM , which is a dual spcae to the tangent space, with a basis dxµ. The
basis is defined by:

xµ
(

∂

∂xν

)
≡ δµν

(
≡ ∂xµ

∂xν

)
(3.25)

Now, one can write:

ω = ωµdx
µ (3.26)

i.e a linear combination (same as was done for the tangent vectors).

To change coordinate systems:

ω = ωµdx
µ

= ωµ
∂xµ

∂x′ν
∂x

′µ (3.27)

Therefore the transformation of the components is given by:

ω′
ν(x

′) =
∂xµ

∂x′ν
ωµ(x) (3.28)

This shows that the tangent vectors and the cotangent vectors transform in the same way,
except that the transformation matrix is now the inverse of each other.

In general, a tensor of type (k, l) is a multi-linear map:

T : T ∗
p × T ∗

p ...× T ∗︸ ︷︷ ︸
k times

×Tp × Tp × ...× Tp︸ ︷︷ ︸
l times

→ R (3.29)

Which can be re-written as:

T ′α1...αk
β1...βl

(x′) =
∂x′

α1

∂xµ1
...
∂x′αk

∂xµk
∂xβ1
∂x′ν1

...
∂xαk

∂x′νl
Tµ1...µk
ν1...νk

(x) (3.30)

The k indicies transform like (tangent) vectors and the l indicies transform like co(tangent)-
vectors.
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In general, co-vectors are different to vectors, however, once a metric has been introduced, the
vectors can be transformed into co-vectors by contracting with the metric tensor and vice-verse.
A metric acts as a 1 to 1 map between vectors and co-vectors.

2.2. Tensor algebra. Let T and S be tensors, then they can be added since they are linear
(as long as the indicies run over the sum number of values, i.e the dimensions are the same).

Definition 10. Once can also define a product of tensors:

Tα1...αk
β1...βl

Sµ1...µk′
ν1...νl′

(3.31)

sometimes simply referred to as a tensor product. The result of the product of tensors is also
a tensor of rank (k + k′ l+ l′), where T is a tensor of rank (k, l) and S is a tensor of rank (k′, l′).

Definition 11. Tensors can be contracted when two of the indicies of the two tensors are the
same and hence summed over (i.e they are just dummy indicies):

Tα1...αk
β1...βk

S
µ1...µk′
ν1(≡α1)...νl′

= Rank(k + k′ − 1, l + l′ − 1) (3.32)

where α1 is summed over

If a tensor is zero in one coordinate system, then it is zero in all coordinate system. In fact a
tensor is the same in all coordinate systems by definition. This is what makes them very useful,
as once the laws of physics are written in terms of tensors they can be applied and compared in
any coordinate system.

2.3. Connection. Laws of physics are generally defined by differential equations, so it is
important to formulate a derivative of a tensor, i.e tensor calculus. As an introductory example,
the derivative of a scalar, ϕ, is a tensor of Rank(0,1)

Claim 7.
∂µϕ(x) ≡ Tensor(0, 1) (3.33)

Proof 7.

∂ϕ(x)

∂xν
=

∂ϕ(x)

∂x′ν
∂x′ν

∂xµ

=
∂x′ν

∂xµ
∂

∂x′ν
ϕ(x) (3.34)

So the components transform as:

∂x′ν

∂xµ
ϕ(x) (3.35)

which is the transformation of rank(0,1) tensor.

Now consider the derivative of a vector, V ′α:

∂

∂x′µ
V ′α(x′) =

∂

∂x′µ

(
∂x′α

∂xν
V ν
)

=
∂x′α

∂xν
∂xβ

∂x′µ
V νβ︸ ︷︷ ︸

Term 1

+
∂xβ

∂x′µ
∂2x′α

∂xβ∂xν
V ν︸ ︷︷ ︸

Term 2

(3.36)

Term 1 shows that the first part transforms as a vector, the second part transforms as a
co-vector, which is expected for a tensor of rank(1,1). Term 2 has a part with a second derivative
and this creates a problem as taking its derivative, in say, the Cartesian coordinate system would
make it zero. However, one can choose another coordinate system, in which this will not be zero,
hence it is not a tensor!.

This was a problem that Riemann set about solving in his PHD. The solution he came up with
was the idea of a covariant derivative.
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Definition 12. The covariant derivative is defined as:

∇µV
µ ≡ ∂µV

ν + ΓναµV
α (3.37)

where Γναµ is called a connection. Note that this is not the same as the Christoffel symbols,
it is more general. We require that ∇µV

ν is a tensor and the ∂µV
ν term is already known. This

provides a condition on the Γναµ, such that ∇µV
ν is a tensor.

Similarly one can define a covariant derivative for a covariant object (i.e indicies at the bottom):

∇αωα ≡ ∂αωβ − Γγβαωγ (3.38)

More generally, for any tensor:

∇αT
γ1...γk
β1...βl

≡ ∂αT
γ1...γk
β1...βl

+ Γγ1δ1αT
δ1...δk
β1...βl

− Γρ1β1α
T γ1...γkρ1...ρl

(3.39)

Definition 13. It turns out, the condition on Γ is:

Γ′α′

µ′β′ ≡
∂x′α

∂xα
∂xβ

∂x′β
∂xµ

∂x′µ
Γαµβ − ∂2x′α

∂xα∂xβ
∂xβ

∂x′β
∂xµ

∂x′µ︸ ︷︷ ︸
Term 2

(3.40)

This is also not a tensor due to the second derivative in Term 2.

Definition 14. The anti-symmetrization of the Γ indicies is defined as:

Γα[β,γ] ≡
1

2
(Γαβγ − Γααβ) = −1

2
Tαβα (3.41)

This object is known as the torsion.

Infact, this object is a tensor as the Term 2 in Eq 3.40 will be equal and opposite due to the
symmetrization of the γ and β indices and hence cancel, leaving the transformation property of
tensor. In general relativity, torsion is assumed to be zero. In general, particles with spin will
create torsion.

Note that throughout this formalism, the metric has never been mentioned. This means that
all these objects will exist independently of a metric. Once a metric is introduced, these expres-
sions can be re-derived with the metric and they are somewhat easier.

3. The metric

Recall that in Minkowski space-time, the Lorentz invariant distance is given by:

ηµνdx
µdxν = dx⃗2 − c2dt2 (3.42)

This distance will be observed to be the same for every observer that is related by a Lorentz
transformation:

xµ → x′µ = Λµνx
ν (3.43)

The linear transformations Λµν , are defined by:

ΛµνΛ
α
βηµα = ηνβ (3.44)

This equation allows 6 independent parameters (as η is a diagonal metric); 3 boosts and 3
rotations. The Lorentz group is a 6 parameter group. Einstein found that all the Laws of physics
are written in tensor form and are invariant under Lorentz transformations.

But Lorentz transformations are just linear transformations as stated above. It is natural to think
about non-linear transformations, i.e frames that are not moving at a constant speed relative to
each other, but frames that are accelerating. Consider the transformation:
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x′ = x+
1

2
at2 (3.45)

and a particle is moving in the un-primed frame with the equation of motion:

d2xp
dt2

= 0 (3.46)

i.e no acceleration of the particle. Then in the primed reference frame, it would look like:

∂2x′p
∂t2

= a (3.47)

i.e there seems to be a force. This is what lead Einstein to his Equivalence principle, that was
discussed in depth in Chapter 2.

3.1. Curved space-time. A curved space-time must locally look like flat space-time. The
trick with gravity is to combine all the flat space-time regions present locally, into a curved space-
time that shows gravity emerging. In curved space-time distances are measured using a metric, in
the same way as the Minkowski mertic:

gµν(x)dx
µdxν (3.48)

where gµν is a symmetric metric tensor, which has 10 independent parameters and follows the
properties:

•
∀ gµν ∃ (gµν)

−1 (3.49)

Which implies that the determinant of the metric tensor is not zero:

|gµν | ̸= 0 (3.50)

• It has three positive and one negative eigenvalues (difference between space and time),
this type of metric is called pseudo - Riemannian (As Riemann invented the mathematics
for curved space. He was working with higher dimensions of Euclidean space, so the
components of the metric did not have a change in sign).

• We say that a space possessing such a metric is locally Minkowski, because one can
always choose coordinates such that the metric at one point is equal to the Minkowski
metric.

To see why the metric can be set to the flat (Minkowski) metric locally, consider the metric
at a particular point, xp:

gµν(xp) (3.51)

since gµν is symmetric, ∃ Oµα such that:

OµαOνβgµν(xp) = Dαβ (3.52)

where Dαβ is a diagonal matrix. In other words, this condition basically states that the metric
is diagonalizable via:

OgOT = D (3.53)

This implies:

g = OTDO (3.54)

The diagonal matrix takes the form:

D =


−l20 0 0 0
0 l21 0 0
0 0 l22 0
0 0 0 l3

 (3.55)
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where lµ are the eigenvalues. Defining:

L ≡


l0 0 0
0 l1 0 0
0 0 l2 0
0 0 0 l3

 (3.56)

Therefore the metric can be written as:

g = OTLηLTO (3.57)

or equivalently:

dxµdxνgµν = dyµdyνηµν (3.58)

with:

y = LOx (3.59)

where we have used:

dxT gdx = dxTOTL︸ ︷︷ ︸
dyT ηdy

ηLOdx (3.60)

Therefore we can transform gµν into ηµν using orthogonal matrices O and L, which have
6 and 4 parameters respectively. This means that at every point in space-time one can fix the
components such that the metric tensor gµν is a flat metric as gµν has 10 independent parameters
aswell. In other words, it is possibly to choose a locally inertial coordinate system that can mimic
and hence remove gravity.

Since the metric must yield the same line element in every coordinate system, the condition
imposed is:

gµνdx
µdxν ≡ g′µνdx

′µdx′ν (3.61)

This is the definition of the metric and thus the coordinate transformation for the metric is:

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x)

= ηµν At a particular point (3.62)

Claim 8. In a ”sufficiently” small neighborhood of the point:

gµν = ηµν and
∂

∂xα
gµν ≈ 0 (3.63)

when these conditions are applied, the laws of physics take the same special relativistic form
as they are in flat space-time.

Proof 8. Start with Eq 3.62 and assume that the coordinate transformation has Taylor series
about an arbitrary point aα, now one can expand xµ about that point:

xµ(x′α) = aµ +
∂xµ

∂x′ν a
(x′ν − a′ν) +

∂2xµ

∂x′α∂x′β
(x′ − a′)α(x′ − a′)β + ... (3.64)

Substitute Eq 3.64 into Eq 3.62:

g′µν(x
′) =

(
∂x

∂x′

)2

|g|a︸ ︷︷ ︸
η

+

Term 2︷ ︸︸ ︷(
∂x

∂x′

∣∣∣∣ ∂2x∂x∂x′

∣∣∣∣
a

g +
∂x

∂x′

∣∣∣∣ ∂x∂x′
∣∣∣∣
a

)
∂g

∂x
(x′ − a′)α+... (3.65)
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The indices have been deliberately left out here, as the large number of indices makes the
expression very confusing, whereas this equation gives a schematic structure to the solution. The
∂x
∂x′ term in the first term on the L.H.S can be used to rotate and rescale the eigenvalues of g such
that it becomes η.

The
∣∣∣ ∂2xα

∂x′β∂x′γ

∣∣∣
a
part from Term 2, in Eq 3.65, is an arbitrary matrix. The matrix is symmetric

in γ and β, therefore it has 10 components from these two indicies. α is independent of γ and β
so it gives rise to 4 more independent parameters meaning that in total, therefore are 4× 10 = 40
free parameters. This means that there are 40 free parameters that can be arbitrarily set. The
coefficients of term two are the derivatives of the metric evaluated at the given point:∣∣∂g′µν∂x′β∣∣a (3.66)

This term is also symmetric in µ and ν and has one independent index β, therefore in total
this also has 40 free parameters. Using the 40 parameters from the first part of term 2 and the
40 parameters from this part, one can solve a set of 40 linear equations to set Term 2 to be zero.
This the there is no change in curvature in to first order and the metric in the first term can be
set to the flat Minkowski metric.

At first sight this seems strange. But this is where Riemann conducted his pioneering work.
He showed that at the second order things become more interesting, as one will have more free
parameters then equations to constrain them, so infact it is not possible to choose a coordinate
transformation from a curved metric to a flat metric at a given point. The second order will have
terms like:

g′µν(x
′) = R.H.S of Eq 3.65 +

∂x3

∂x′∂x′∂x′︸ ︷︷ ︸
Term a

+Terms α (3.67)

But Terms α have already been determined as they will have terms from the R.H.S of Eq
3.65, so the only undetermined Term is Term a. These are numbers that are coefficients of the
(x′ − a′)2. Now the question is, is it possible to set the parameters of :∣∣∣∣ ∂x3

∂x′∂x′∂x′

∣∣∣∣
a

(3.68)

such that the second derivative of the curvature is 0:

∂gµν
∂xα∂xβ

= 0 (3.69)

Eq 3.68 is symmetric in α, β, γ as partial derivatives commute, µ is a free index. A symmet-
ric three index tensor with indicies running over 4 values. Let’s count the possible number of
parameters:

3 indicies are the same: ⇒ α = β = γ = 0, 1, 2, 3 4 values

2 indicies are the same: ⇒ α = β = 0, γ = 1 etc 12 values

no indicies are the same: ⇒ 4 values (3.70)

Therefore the number of parameters here is 20. There is also the free µ index in the top
which is independent from these indicies and takes on 4 values itself, so in total there are 80 free
parameters from Eq 3.68.

On the other hand Eq 3.69, is symmetric in µ, ν and α, β, hence they each contribute 10 pa-
rameters each, giving a total of 100 free parameters. Thus there are only 80 equations that can be
solved and set to zero. This means there are 20 non zero second derivatives of the curvature and it
is precisely these 20 parameters that describe the curvature of space-time, that cannot be simply
removed by choosing a coordinate system. These 20 free parameters form the Riemann tensor. It
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took Einstein over 10 years to understand this mathematics of Riemann and incorporate it into
his theory and from the above calculations, you can see why!.

The metric can not only measure distances, it can also measure volumes. This is important,
as the action involves an integration over the volume of space time. It has already been shown
that the metric transforms as:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (3.71)

The determinant of the metric is:

|g′µν | ≡ g′ =

∣∣∣∣ ∂x∂x′
∣∣∣∣2 g(≡ |gαβ|) (3.72)

Therefore the determinant of the metric transforms with 2 powers of the Jacobin matrix.
Recall that the metric has signature of (-,+,+,+), thus its determinant will necessarily be negative
and to compensate for this negative sign in the square root, one has to include a minus sign. The
determinany therefore transforms as:

√
−g =

∣∣∣∣ ∂x∂x′
∣∣∣∣√−g (3.73)

and in general, integrating over d4x′, will transform as:

d4x′ =

∣∣∣∣∂x′∂x

∣∣∣∣ d4x (3.74)

Therefore:

d4x′
√
−g′ ≡ d4x

√
−g (3.75)

This is known as the invariant volume component and is completely independent of the co-
ordinate system. One more important function will be the inverse metric, gµν and is defined
as:

gµνgνα = δµα (3.76)

This transforms in the opposite way to gµν :

g′µν(x′) =
∂x′µ

∂xα
∂x′

ν

∂xβ
gαβ (3.77)

This is used to raise and lower indicies in the same way that η is used in flat space.

Example 7. Consider a 2 dimensional sphere in a 3 dimensional Euclidean space, S2 ∈ R3.
The sphere satisfies:

x2 + y2 + z2 = 1 (3.78)

The simplest metric is the metric inherited by the Euclidean space:

dx2 + dy2 + x2 (3.79)

Define a metric parametrised by spherical coordinates over the sphere with unit radius, this
gives the transformation from Cartesian to Spherical coordinates:

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ (3.80)

Thus, the metric embedded into the spherical coordinates is:
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dϕ2 + sin2 θdϕ2 (3.81)

when θ ≈ π
2 , the metric reduces to:

dθ2 + dϕ2 (3.82)

so if the spherical coordinates are constrained to a point, the metric looks flat. In fact it
does’nt matter what the point is, as even sin2 θ ̸= 1 will just be a number < 1, which is still
another flat matter scaled slightly differently. On the other hand if sin θ = 0 i.e at the poles, the
metric is not flat, as the the phi coordinate becomes singular (i.e all ϕ coordinates will specify the
same point!).

Figure 12. Spherical coordinates

The metric tensor in these coordinates is given by:

gµν =

(
1 0
0 sin2 θ

)
(3.83)

volume element in these coordinates is given by:

Volume =
√
g d2x = sin θdθdϕ (3.84)

Note that there is no minus sign in the square root here. This is because the metric being used
here is Riemannian, i.e it does not have a time component that changes the sign. As mentioned
before. the coordinates defined for the sphere do not appear flat at the poles of the sphere, as the
ϕ coordinates become singular at two points. One can do better by parametrising the sphere by
stereographic coordinates.

The way to define stereographic coordinates is:

• Take a plane tangent to the north pole, P .
• Take every point on the sphere and connect it to the south pole in a straight line with

the line intersecting the plane P .
• This project every point on the sphere to a unique point on this plane.
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It is obvious that the singular point will be the south pole as it would have a line that is tangent
to itself and hence parallel to P . In flat Euclidean space, parallel line will never intersect. It can
be shown1 that the metric in the stereographic coordinates is:

4(dR2 +R2dθ)

(1 +R2)2
(3.85)

where the geometry of in Figure 13 defines:

z1
2

=
x1

1 + x3
z2
2

=
x2

1 + x3
z1 = R cos θ

z2 = R sin θ (3.86)

Figure 13. Stereographic coordinates

3.2. de-Sitter space-time. John Nash proved the following theorem:

Theorem 2. Every Riemannian manifold can be isometrically
2
embeddedinaEuclideanspace,ofsomedimension.

It turns out that any 4D manifold can be locally embedded in 10 Euclidean dimensions. This
theorem can be applied to the simplest 4D (1+3) space-time known as the de-Sitter space-time.
It seems that our universe is evolving towards this metric. The de-Sitter space is basically a 4-D
sphere, i.e a space with maximum symmetry.

Imagine a 5D Minkowski space, with the metric:

ηAB =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3.87)

where A,B ∈ {0, 1, 2, 3, 4}. The line element is simply the Pythagorean theorem in 5D:

ηABdx
AdxB = d(x0)2 + d(x1)2 + d(x2)2 + d(x3)2 + d(x4)2 (3.88)

Consider a 4D hyperboloid embedded in this space (Recall that a hyperboloid is just like a
sphere in that it is described by a quadratic equation, the only difference being a minus sign in
the quadratic as supposed to all positive signs):

4D hyperboloid ⇒ L2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 + (x4)2 (3.89)

This geometry represents a bouncing universe, as x0 time = −∞, the universe is a big sphere.
At x = 0, the universe is small sphere, and at x0 the universe blows up in size again. Eq 3.89 can
be solved by setting:

1The calculation is rather lengthy and would diverge too far away from the main points of this example. The
calculation is very common and can be found at many places on the web.
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x0 = L sinh t

xI = L cosh tΩI I ∈ {1, 2, 3, 4} (3.90)

Such that:

ΩIΩI = 1 (3.91)

The Ω parametrizes a 3-sphere in this space:

ΩI ≡ (sinχ sin θ cosϕ, sinχ sin θ sinϕ, sinχ cos θ cosχ) (3.92)

Light cone

Figure 14. de-Sitter space

The line element in this metric becomes:

L2 = L2
(
−dt2 + cosh2 tdΩ2

3

)
(3.93)

where:

dΩ2
3 = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2) (3.94)

At a given time, the size of the universe is given by the cosh2 t term. At large times it becomes
exponentially large and yet the dark energy remains constant. This is a bizarre property of dark
energy and makes the universe we appear to live in very strange indeed.

So far the de-Sitter space has been parametrised by a closed universe. But it can be repre-
sented in many other ways. Since the space is embedded in a Minkowski space; there are three
natural slicing’s. The closed slicing is where the normal to the plane of the surface is space-like.
The other two are obviously time-like or light-like. The flat spacing is parametrised by:
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x0 = L(sinh t+
1

2
r2et)

xi = Letxi, i ∈ {1, 2, 3}

x4 = L(cosh t− 1

2
r2et) (3.95)

Then:

L(−dt2 + e2tdxidxi) = d(xi)2 + d(x4)2)− d(x0)2 (3.96)

This expands exponentially at large t. Note that:

−∞ < t <∞ (3.97)

and at −∞, e2tdxi2 terms are zero, hence the metric is singular at t = −∞ (as the determinant
is 0, hence not invertible). At t = −∞,→ x0 + x4 = 0. Thus flat slicing becomes singular on the
surface represented by the line x0 + x4 = 0. It only covers half of the space time as there is an
equal amount above the plane and below it.

This is precisely the same as the idea of inflation. Inflation requires the very early universe
looked flat and hence had the same form as the metric. The length scale during inflation would
have been very small (i.e the damping term is exponentially small), therefore after a small amount
of time, the universe would expand exponentially. Going back to the metric:

L2(−dt2 + cosh2 td Ω2
3) (3.98)

Define a proper time:

tp ≡ Lt (3.99)

Substitute Eq 3.99 into Eq 3.98:

cosh2
(
tp
L

)
dΩ2

3 − dt2p (3.100)

It has already been shown that at a given point, one can choose coordinates such that locally

the metric looks flat. The cosh2
(
tp
L

)
dΩ2

3 is some scale, i.e the radius of the 3-sphere, so it looks

like flat Minkowski (as it has a time component) space-time.

A curious fact about de-Sitter space is that it has a temperature. Suppose the proper time is
related to some imaginary time, τ :

tp ≡ i(τ − π

2
) (3.101)

Substitute Eq 3.101 into Eq 3.100:

dτ2 + L2 sin(
τ
L ) dΩ2

3 (3.102)

sin2 is obviously periodic, hence the metric is periodic in imaginary time. In fact the metric
is that of a 4-sphere. The period is just 2πL. From the Boltzmann distribution:

e−
H
T = e−iHt (3.103)

where:

t ≡ − i

T (temp)
H = Hamiltonian (3.104)

Then in statistical mechanics, one sums over all states and for a diagonalised metric, it is just
the trace:
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Tr(e
−H
T ) (3.105)

From the e−iHT equivalence, the function Tr(e−
H
T ), must be periodic (as eiθ is periodic) with

period ∆τ :

∆τ =
1

T
(3.106)

By equating the space-time periodicity in imaginary time and the period in a thermal system;
it is easy to see that:

1

T
= 2πL⇒ T =

1

2πL
≡ H

2π
(3.107)

The de-Sitter space time is a very useful example of embedding a metric into a higher dimension
space-time (i.e Nash’s theorem).

3.3. Curvature in the metric. Recall that previously, the curvature of arbitrary curved
spaces has been discussed in terms of the connection and the co-variant derivative as shown in Eq
3.192, these are discussed without the metric. The Γ’s can be fixed in general relativity in terms
of the metric by making two simplifying assumptions:

• Assume there is no torsion:

T νµα ≡ 0 ⇒ Γνµα ≡ Γναµ (3.108)

• The metric tensor is a constant with respect to the covariant derivative:

∇αgµν ≡ 0 (3.109)

This quantity is called the metricity.

Claim 9. If:

∇αgµν = 0 (3.110)

And the torsion is zero, then the connection is given by:

Γµαβ =
1

2
gµν(gαλ,β + gβλ,α − gαβ,λ) (3.111)

In terms of the metric, these are called the Christoffel symbols.

Proof 9. Start with the the definition of the metricity being zero:

∆αgµν = 0

= ∂αgβα − Γδβαgδγ − Γδγαgβδ (3.112)

One can include the cycles of the indicies:

∂αgαβ − Γδαγgαβ − Γδβγgαδ = 0 (3.113)

∂βgγα − Γδγβgδα − Γδαβgγδ = 0 (3.114)

∂αgβγ − Γδβαgδγ − Γδγαgβδ = 0 (3.115)

Adding the equations above gives:

∂αgβγ + ∂βgγα − ∂γgαβ − 2Γδγαgβδ = 0 (3.116)

Multiply through by gγν :

∂αgβγg
βν + ∂βgγαg

βν − ∂γgαβg
βν − 2Γδβαg

γ
δ g

ν
γ = 0 (3.117)

Which can just be re-arranged to give the required form:
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Γνγα =
1

2
gνγ (∂αgβγ + ∂βgγα − ∂γgαβ) (3.118)

This can also be proved in the other order, i.e if Eq 3.111 is true, then Eq 3.110 must also be
true:

gµν;γ =
∂gµν
∂xγ

− Γαµγgνα − Γανγgµα

= gµν,γ − Γαµγgαν − Γανγgµα (3.119)

The Christoffel symbols are:

Γαµγ =
1

2
gασ

(
∂gµσ
∂xγ

+
∂gγσ
∂xµ

− ∂gµγ
∂xσ

)
(3.120)

Γανγ =
1

2
gασ

(
∂gνσ
∂xγ

+
∂gγσ
∂xν

− ∂gνγ
∂xσ

)
(3.121)

Substituting Eq 3.121 and 3.120 into Eq 3.119:

gµν;γ = gµν,γ −
1

2

gανgασ︸ ︷︷ ︸
Contract

(
∂gµσ
∂xγ

+
∂gγσ
∂xµ

− ∂gµγ
∂xσ

)
+ gαµg

ασ︸ ︷︷ ︸
Contract

(
∂gνσ
∂xγ

+
∂gγσ
∂xν

− ∂gνγ
∂xσ

)
= gµν,γ −

1

2

(
gσν

(
∂gµσ
∂xγ

+
∂gγσ
∂xµ

− ∂gµγ
∂xσ

)
+ gσµ

(
∂gνσ
∂xγ

+
∂gγσ
∂xν

− ∂gνγ
∂xσ

))
(3.122)

Now the g′s can be contracted with the g′s inside the derivative to obtain:

gµν;γ = gµν,γ −
1

2
(
∂gµν
∂xγ

+
∂gγν
∂xµ

− ∂gµγ
∂xν

+
∂gνµ
∂xγ

+
∂gγµ
∂xν

− ∂gνγ
∂xµ

) (3.123)

Now we have to remember that the metric tensors are symmetric, i.e:

gµν = gνµ (3.124)

Therefore we are left with:

gµν;γ = gµν,γ −
1

2

(
2
∂gµν
∂xγ

)
= gµν,γ −

∂gµν

∂xγ

= gµν,γ − gµν,γ

= 0 (3.125)

Because under these assumptions, the connection only depends on the first derivative of the
metric, and can be set to zero at a particular point, through a coordinate transformation. Thus
covariant derivatives just become ordinary derivatives at a given point.

If metricity is not zero, then a vector Vµ:

∇αV
µ = 0 (3.126)

i.e it is a constant vector on a curved space. The length square of this vector is:

gµνV
µν (3.127)

This means:
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∇αϕ =
∂

∂xα
(gµνV

µV ν) = ∇α(gµνV
µV α)

= (∇αgµν)V
µV ν︸ ︷︷ ︸

Term 1

+ gµν∇αV
µV ν︸ ︷︷ ︸

Term a

+ gµνV
µ∇µ∇αV

ν︸ ︷︷ ︸
Term b

(3.128)

Where ϕ is the length, thus a scalar quantity. By assumption Terms a and b are both zero.
The fist term involves the metricity and if this is not zero, i.e if one of the assumptions of GR
are not true, then the length squared of a constant vector is not constant under the covariant
derivative. This is very strange and it actually changes what the constant vector actually is.

Now the metric is embedded into the manifold with a formal description. In general, the coor-
dinate system that corresponds to the x mapping and the x′ mapping may have different regions
in which they are valid, except for an overlapping regions in which they must necessarily agree.
The way this is done, is by writing equations that are invariant under coordinate transformations,
i.e in terms of tensors.

3.4. Parallel transport. The most fundamental object on a manifold is a curve. The curve
in general will be parametrised by some parameter, λ, that runs along the curve in a given
coordinate system. The coordinates can be chosen with an arbitrary transformation to different
coordinate systems:

x′µ(λ) = x′µ(xµ(λ)) (3.129)

The transformation from one coordinate system to another, is always a function of the old
coordinates, related in general by a transformation matrix. The actual transformation is not a

vector, its just some function (like sin θ etc) But the tangent vector ∂x′µ

∂λ , is a vector:

∂x′µ

∂λ
=
∂x′µ

∂xα
∂xα

∂λ
(3.130)

If we define:

ξµ ≡ ∂xµ

∂λ
(3.131)

then:

ξ′µ =
∂x′µ

∂xα
ξα (3.132)

One can now insist that this equation for the vector is invariant under coordinate transforma-
tions. Consider a vector V µ(λ), defined at every point on the curve. A vector is said to be parallel
transported along a curve, if:

DV µ

Dλ
≡ ∂V µ

∂λ
+ ΓµαβV

α(λ)
∂xβ

∂λ
≡ 0 (3.133)

where D represents the absolute derivative and is defined by the equation above. Γµαβ is
calculated at the point of the curve:

Tµαβ = Γµαβ(x
µ(λ)) (3.134)

which is equivalent to:

∂V µ

∂λ
= −ΓµαβV

α(λ)
∂xβ

∂λ
(3.135)

This is the closest one gets to saying that a vector is constant on a curve.
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Example 8. Suppose a contravariant vector:

V i = (1, 2, 3) (3.136)

in the above co-ordinate system is parallel transported from point (r, θ, ϕ) to the point (r +
α, θ + β, ϕ+ γ), where α << 1, β << 1, γ << 1, under the metric:

ds2 = dr2 + r2dθ2 + sin2 rdϕ2 (3.137)

The change in V i under parallel transport is given by Eq 3.135. The derivative terms in Eq
3.135 represents how much a coordinate changes with respect to the parameter that parametrizes
the curve, which in this case is simply:

∂x1

∂λ
= α

∂x2

∂λ
= β

∂x3

∂λ
= γ (3.138)

Therefore the change in V i is:

∂V 1

∂λ
= −Γ1

αβV
α ∂x

β

∂λ

= −Γ1
22V

2 ∂x
2

∂λ
− Γ1

33V
3 ∂x

3

∂λ

=
2β

r
+

sin 2r

2
3γ (3.139)

Similarly:

∂V 2

∂λ
= −Γ2

αβV
α ∂x

β

∂λ

= −Γ2
12V

2 ∂x
1

∂λ

= −2α

r
− β

r
(3.140)

∂V 3

∂λ
= −Γ3

αβV
α ∂x

β

∂λ

= −Γ3
13V

3 ∂x
1

∂λ
− Γ3

31V
1 ∂x

3

∂λ
= −3α cot r − γ cot r (3.141)

The simplest curves are straight line in flat space, which correspond to geodesics in curved
space-time. The definition of a geodesic is that the absolute derivative of the tangent vector is
proportional to the tangent vector:

Dξµ

Dλ
= f(λ)ξµ (3.142)

for some function f(λ) which is introduced to remove the proportionality sign and ξ is the
tangent vector defined by:

ξµ ≡ ∂xµ

∂λ
(3.143)

If a curve is a geodesic, the curve can be can be re-parametrised in a way that f(λ) = 0. So
change λ to σ(λ) to re-parametrize the geodesic. The σ(λ) is monotonic in λ, i.e for each value of
λ, there is a value for σ(λ). Let’s rewrite Eq 3.142 in terms of σ:

xµ(λ) → xµ(λ(σ)) ≡ xµ(σ) (3.144)
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Using the definition of the absolute derivative in Eq 3.133, Eq 3.142 can be written under this
parametrization as:

∂

∂λ

(
∂σ

∂λ

∂xµ

∂xµ
∂σ

)
+ Γµβα

∂β

∂σ

∂xα

∂σ

(
∂σ

∂λ

)2

= f(λ)
∂xµ

∂σ

∂σ

∂λ
(3.145)

Using the chain rule

∂2σ

∂λ2
∂xµ

∂σ︸ ︷︷ ︸
Term a

+

(
∂σ

∂λ

)2(
∂2xµ

∂σ2
+ Γµβα

∂xβ

∂σ

∂xα

∂σ

)
︸ ︷︷ ︸

Term α

= f(λ)
∂σ

∂λ

∂xµ

∂σ︸ ︷︷ ︸
Term b

(3.146)

By equating Term a and Term b:

∂2σ

∂λ2
≡ f(λ)

∂σ

∂λ
(3.147)

which is s simple second-order partial differential equation, which has the solution:

∂σ

∂λ
= Ae

∫
f(λ)dλ ∀A ∈ C (3.148)

This leaves Term α in Eq 3.146. Since ∂σ
∂λ is non-zero (as by definition σ ≡ σ(λ)), the only

way Eq 3.146 can be true is if:

∂2xµ

∂σ2
+ Γµβα

∂xβ

∂σ

∂xα

∂σ
= 0 (3.149)

which is simply the geodesic equation. σ is called the affine parameter, affine means the σ is
determined up to transformations of the form:

σ′ = Aσ +B ∀A,B ∈ C (3.150)

In our universe, all particles follow geodesics in curved space-time.

4. Principle of least action

The principle of least action is the corner-stone of all physics. In this section, the geodesic
equations will be derived using the action principle and show that it yields the same result as
before.

4.1. Introducing the action. The action in general relativity takes the form:

S = −mc
∫
dτ (3.151)

where τ is the proper time that parametrizes the world line is space-time. The particles follow
a curve is space-time xµ(τ), it turns out that τ is an affine parameter and the equation of motion
for the particle is the geodesic equation with this parameter. Re-write:

S = −mc
∫ √

−ηµνdxµdxν

= −mc
∫ √

c∂t2 − ∂x⃗2

= −mc
∫
c∂t

√
1−

(
∂x⃗

∂t

)2
1

c2
(3.152)

The equivalence principle states that the laws of physics must be exactly the same in curved
space-time, as the laws of physics in flat space-time within a small neighborhood, so ηµν → gµν :

S = −mc
∫ √

−ηµνdxµdxν (3.153)
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This can be parametrised using a parameter, say λ:

S = −mc
∫ √

−gµν
∂xµ

∂λ

∂xν

∂λ
dλ (3.154)

4.2. Aside: Why does E=mc2?. If we take a general action:

S =

∫ xf (tf )

xi(ti)

Ldt (3.155)

for some Lagrangian:

L = L(x⃗, ˙⃗x) (3.156)

Minimising the action yields the Euler-Lagrange equations, which must be satisfied and are
the equations of motion of the particles (i.e the solution to these equations gives the trajectory of
the particle).

Evaluated on the classical trajectory, this action is a function of the trajectory at x(ti) and x(tf )
(or a function to be more precise). This is called Hamiltons principle function. Consider varying
the boundary conditions:

δV ≡ {xi, ti, xf , tf} (3.157)

This will cause variations in the classical trajectories x⃗c(t). Now we want to know, what is
the variation in the classical action, under δV :

δSclassical =

∫ xf (tf+δtf )+δxf

xi(ti+δti)+δxi

Ldt (3.158)

Using Leibniz’s integral rule:

δSclassical = δtfL(tf )− δtiL(ti) +

∫ tf

ti

∂L

∂x⃗
δx⃗dt+

∫ tf

ti

∂L

∂ ˙⃗x
δ̇⃗xdt (3.159)

Using the Euler-Lagrange equation:

∂L

∂x
=

∂

∂t

(
∂L

∂ẋ

)
(3.160)

Eq 3.159 can be re-written as:

δSclassical =

[
δtL+

∂L

∂ ˙⃗x
δx⃗

]ti
tf

(3.161)

Now one has to realise a subtlety:

δx⃗f = δtf + ˙⃗xfδtf (3.162)

Hence Eq 3.161 can be re-written as:

δS =

[
δL+ (δx⃗− ˙⃗xδt)

∂L

∂ẋ

]tf
ti

(3.163)

Using the definitions:

p ≡ ∂L

∂ ˙⃗x
Canonical momentum

H ≡ p ˙⃗x− L Hamiltonian (3.164)

Thus the Hamiltonian variation function gives the canonical momentum and the Hamiltonian
as the coefficients of the variations in the final and initial positions and times. Therefore:
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∂S′

∂xf
= p⃗f (-ve for initial)

∂S′

∂tf
= −Hf (+ve for initial) (3.165)

Noether’s theorem: Imagine that the action has a symmetry, for example translation:

x⃗→ x⃗+ c(constant) (3.166)

regard this is a variation, therefore:

δxf = δxi ≡ c (3.167)

We know that:

δSclassical = 0 = [δxip]
f
i (3.168)

since xf ̸= xi, this implies:

p⃗f = p⃗i (3.169)

Thus momentum is conserved. If then, there is a time translation symmetry:

t→ t+ c (3.170)

now regard this as a variation:

δSclassical = [δtH]
f
i = 0 (3.171)

since tf ̸= ti:

Hf ≡ Hi (3.172)

therefore energy is conserved. Lets go back to the action defined in Eq 3.152; this shows that
the Lagrangian is:

L = mc2

√
1−

(
∂x

∂t

)2
1

c2
(3.173)

The momentum is given by:

p =
∂L

∂ẋ

= mc2
(
∂x
∂t

)√
1−

(
∂x
∂t

)2 1
c

= mvγ (3.174)

where:

∂x

∂t
≡ v (3.175)

For the Hamiltonian, i.e energy:
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H = pẋ− L

= mv2γ −mc2
√
1− v2

c2

= mv2γ −
(
mc2

(
1− v2

c2

)
γ

)
= −mv2γ −mc2γ +

mc2

c2
v2γ

= mc2γ (3.176)

4.3. Geodesic equation from the action. To get the geodesic equations, lets vary the
action in Eq 3.154:

δS =
∂S

∂λ
dλ

= −mc
2

∫
dλ√

−gµνx′µx′ν
(−gµν,λδxλx′νx′µ + 2gµνδx

′µx′ν︸ ︷︷ ︸
Term1

) (3.177)

Term 1 has a factor of two in front, as the same terms come from x′µ and x
′ν , Notice that:

ẋµ =
1

c

∂xµ

∂τ

=
∂xµ

∂λ

1√
−gµνx′µx′ν

(3.178)

Thus Eq 3.177 simplifies to:

δS = −mc2
∫

1

2
∂τ
(
−gµν,λδxλẋµẋν − 2gλνδẋ

λẋν
)

(3.179)

The next thing to do, as in any variational problem, is to integrate by parts. Notice that
this integration by parts was not done with respect to λ. First the λ is converted into τ ; this is
motivated by the fact that λ is an arbitrary parametrisation imposed on a curve. Integrating by
parts with respect to λ, will give equations of motion with λ, which will then give the trajectories
with respect to λ, which is not very useful when λ is not known!. This is why the curve is
re-parametrised by:

c∂τ = ∂λ
√

−gµνx′µx′ν (3.180)

So it is seen from the expression above that the λ terms on the L.H.S are completely redundant,
as they just cancel out, so the trajectory obtained from the solutions of the equations of motion
will be as functions of τ . Integrating by parts:

δS ∝
∫
(−gµν,λẋµẋν + 2gλν ẋ

ν) · δxλ = 0 (3.181)

This implies that:

∂

∂τ
(gλν ẋ

ν) =
1

2
gµν,λẋ

µẋν (3.182)

Which can be further simplified by expanding out the product of derivatives first:
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∂gλν
∂t

ẋν + gλν ẍ
ν =

1

2
gµν,λẋ

µẋν

gλν
∂xµ

∂xµ

∂t
ẋν + gλν ẍ

ν =
1

2
gµν,λẋ

µẋν

gλν,µẋ
µẋν + gµν ẍ

ν =
1

2
gµν,λẋ

µẋν

ẍµ = −Γµνλẋ
ν ẋλ (3.183)

Which is the usual geodesic equation.

5. Riemann Tensor

Until now, a curve on a manifold is considered and a condition is imposed on it, such that the
tangent vectors to the curves are parallel to the curve, which gives rise to the geodesic equation.
The next thing to do, is to consider two curves that are close by on a manifold shown in figure 15.

Figure 15. Manifold with two geodesics

The two geodesics are displaced by δxµ(σ). The two geodesic equations are defined by the
derivatives of the tangent vectors for each curve being zero:

D2xµ(σ)

Dσ2
=
∂2xµ(σ)

∂σ2
+ Γµνλ(x(σ))

∂xν

∂σ

∂xλ

∂σ
= 0 (3.184)

and
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D2(xµ + δxµ)

Dσ2
=

∂2

∂σ2
(xµ(σ) + δxµ(σ)) + Γµνλ(x(σ))

∂xν

∂σ

∂xλ

∂σ
= 0 (3.185)

Subtract the two equations and ignore second order terms in δxλ:

∂2δxµ

∂σ2
+ ∂αΓ

µ
νλ(x)δx

α ∂x
ν

∂σ

∂xλ

∂σ
+ 2Γµνλ

∂δxµ

∂σ

∂δxµ

∂σ
= 0 (3.186)

But now:

∂2δxµ

∂σ2
̸= Vector (3.187)

Thus it is not a useful quantity as it will vary from coordinate system to coordinate system,
so one needs to re-write this with more connections:

D2δxµ

Dσ
=

D

Dσ

(
Dδxµ

Dσ

)
=

D

Dσ

(
∂δxµ

∂σ
+ Γµνλδx

ν ∂x
λ

∂σ

)
=

∂2δxµ

∂σ2︸ ︷︷ ︸
Term a

+Γµνλ,α
∂xα

∂σ
δxν

∂xλ

∂σ
+ Γµνλ

∂δxν

∂σ

∂xλ

∂σ
+ Γµνλδx

ν ∂2xλ

∂σ2︸ ︷︷ ︸
Term b

+Γµαβ
∂δxα

∂σ

∂xβ

∂xσ
+ ΓµαβΓ

α
νλδx

ν ∂x
λ

∂σ

∂xβ

∂σ

(3.188)

Substitute Eq 3.185 into Term b and Eq 3.186 into Term a. The equation above then simplifies
to:

D2δxµ

Dσ
= −Γµνλ,ρδx

ρẋµẋλ + Γµρλ,ν ẋ
νδxρẋλ − ΓµνλΓ

λ
αβ ẋ

αẋβdxν + ΓµαβΓ
α
νλδx

ν ẋλβ̇

= −
(
Γµνλ,ρ − Γµρν,λ + ΓµργΓ

γ
νλ − ΓµγλΓ

γ
ρν

)
δxpẋν ẋλ

≡ Rµνλρẋ
ν ẋλδxρ (3.189)

where we have defined:

Rµνλρ = −
(
Γµνλ,ρ − Γµρν,λ + ΓµργΓ

γ
νλ − ΓµγλΓ

γ
ρν

)
(3.190)

This is known as the Riemann tensor and it measures geodesic deviation (also called the
intrinsic curvature of the manifold. This is different to extrinsic curvature, which corresponds to
the curvature of an external embedding space.)

Claim 10. The commutator of the covariant derivative acting on an arbitrary vector gives
the Riemann tensor times the vector:

(∇µ∇ν −∇ν∇µ)V
α = RαγµνV

γ (3.191)

Proof 10. The covariant derivative is defined as:

∇µV
α ≡ ∂V α

∂xµ
+ V µΓαµν (3.192)

For a mixed tensor:

∇γW
µ
ν ≡ ∂αW

µ
ν + ΓµγσW

σ
ν − ΓσγνW

µ
σ (3.193)

Using these two definitions we can write out the second covariant derivatives as:

∇µ(∇νV
α) = ∂µ∂νV

α+Γανγ∂µV
γ+V γ∂µΓ

α
νγ−Γσνµ(∂σV

α+V γΓασγ)+Γαµσ(∂νV
σ+V γΓσνγ) (3.194)



5. RIEMANN TENSOR 61

∇ν(∇µV
α) = ∂µ∂νA

α+Γαµγ∂νV
α+V γ∂νΓ

α
µγ−Γσνµ(∂σV

α+V γΓασγ)+Γανσ(∂µV
σ+V γΓσµγ) (3.195)

Subtract these two equations:

(∇µ∇ν −∇ν∇µ)V
α = (∂µΓ

α
νγ − ∂νΓ

α
µγ + ΓαµσΓ

σ
νγ − ΓανσΓ

σ
µγ)V

γ (3.196)

The term in the brackets on the R.H.S is simply the Riemann tensor.

So the Riemann tensor gives the degree of non-commutativity between the covariant derivative,
which is to be expected, as if there is no curvature, then the covariant derivative is the same as
the partial derivative(as the Γ is zero) and partial derivatives commute, which will lead to the
Riemann tensor being zero. In general for [∇µ,∇ν ] on a vector give a +R for upper indicies and
−R for lower indicies.

5.1. Symmetries of Riemann tensor. The first thing to do is to lower indicies.

Claim 11.
Rµνλρ = gµαR

α
νλρ (3.197)

We have already shown that at a given point on a manifold, the Christoffel symbols can be
set to zero by an appropriate coordinate transformation. In this approximation:

Rµνλρ =
1

2
(gµρ,νλ − gµλ,νρ − gνρ,µλ + gλν,ρµ) (3.198)

Proof 11. In coordinates that have Γ = 0, the Riemann tensor is:

Rµνλρ = ∂λΓ
µ
ρν − ∂ρΓ

µ
λν (3.199)

To lower the index:

Rµνλρ ≡ gµκR
κ
νλρ

= gµκ(∂λΓ
κ
ρν − ∂ρΓ

κ
λν) (3.200)

In this local neighborhood on the manifold we are assuming the first derivative of g to be zero,
therefore this equation simplifies to:

∂λΓ
κ
βν =

1

2
gκσ(∂λ∂νgρσ + ∂λ∂ρgσν − ∂λ∂σgνρ) (3.201)

Multiply this by gκµ:

gκµ∂λΓ
κ
ρν =

1

2
gκµg

κσ(∂λ∂νgρσ + ∂λ∂ρgσν − ∂λ∂σgνρ)

=
1

2
(∂λ∂νgρµ + ∂λ∂ρgµν − ∂λ∂µgνρ) (3.202)

Similarly:

gµν∂ρΓ
κ
λν =

1

2
(∂ρ∂νgλµ + ∂ρ∂λgµν − ∂ρ∂µgνλ) (3.203)

Substitute Eq 3.203 from Eq 3.202 and put into Eq 3.200:

Rµνλρ =
1

2
(∂λ∂νgρµ + ∂ρ∂µgνλ − ∂λ∂µgνρ − ∂ρ∂νgλµ) (3.204)

Now one can analyse the symmetries of the Riemann tensor at a given point. Eq 3.204 has
two obvious symmetries and one that it is not so obvious.

• The Riemann tensor is symmetric under the first and third indicies and the second and
fourth indicies:

Rµν ≡ Rλρµν (3.205)
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• The Riemann tensor is anti-symmetric under the first and second indicies and the third
and fourth indicies:

Rµνλρ = −Rµνρλ ≡ Rνµρλ (3.206)

• This is not the obvious symmetry and its to do with the cyclicity of the Riemann tensor:

Claim 12. Rµνλρ +Rµρνλ +Rµλρν = 0
This is the statement as:

Rµ[νλρ] = 0 (3.207)

Proof 12. Writing out the Riemann tensor explicitly from Eq 3.204:

Rµνλρ +Rµρνλ +Rµλρν =
1

2
(∂λ∂νgρµ + ∂ρ∂µgνλ − ∂λ∂µgνρ − ∂ρ∂νgλµ)

+
1

2
(∂ρ∂λgνµ + ∂ν∂µgλρ − ∂ρ∂µgλν − ∂ν∂λgρµ)

+
1

2
(∂ν∂ρgλµ + ∂λ∂µgρν − ∂ν∂µgρλ − ∂λ∂ρgνµ) (3.208)

Using the symmetry:

gµν ≡ gνµ (3.209)

and the commutativity of the derivatives:

Rµνλρ +Rµρνλ +Rµλρν ≡ 0 (3.210)

The number of independent components of Riemann tensor, are reduced by the symmetries.
The Riemann tensor can be thought of as a matrix with two lower indicies where each index is a
pair of anti-symmetric indicies i.e:

Rψϕ = Rµνρλ (3.211)

So think about a symmetric matrix, whose indicies takes on values from 1...D, where D is the
dimension of the matrix, and each ψ and ϕ is anti-symmetric matrix, so it will take on values:

D(D − 1)

2
(3.212)

The factor of half come as the two values can be flipped, i.e:

µ, ν → ν, µ (3.213)

Therefore the overall symmetric matrix, Rψϕ will have D(D−1)
2 dimensions, and a symmetric

matrix the values:

1

2
D′(D′ + 1) (3.214)

where:

D′ ≡ D(D − 1)

2
(3.215)

therefore:

# of values for Riemann =
1

2

(
D(D − 1)

2

)(
D(D − 1)

2
+ 1

)
=

1

8
D(D − 1)(D2 −D + 2) (3.216)
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However, there is a still the symmetry of the cyclicity that needs to be taken into account.
This does not provide an obvious condition on the number of values, as some of the symmetries of
cyclicity may have already been imposed by the two previous conditions, and one would not want
to count any symmetries twice!.

Claim 13. The cyclicity condition implies that the Riemann tensor is totally anti-symmetric
on the 4 indicies, if the previous two conditions are imposed.

Proof 13. The only way to see this, is by explicitly writing out the indicies:

µνλρ→ νµλρ→ −µνρλ
µρνλ→ νρµλ→ −µλρν
µλρν → νλρµ→ −µρνλ (3.217)

Therefore it is totally anti-symmetric on all 4 indicies.

This gives the number of equations constraining the parameters as:

D(D − 1)(D − 2)(D − 3)

4!
(3.218)

Therefore the number of independent components of Riemann is:

Total # of components =
1

8
D(D − 1)(D2 −D + 2)− D(D − 1)(D − 2)(D − 3)

4!

=
D2

12
(D2 − 1) (3.219)

So for 4 dimensions the number of parameters for the Riemann tensor is 20 and this is what
is expected as previously it was found that there are 20 unidentified parameters when trying to
set the second order derivatives of the metric to zero at a point. The Riemann tensor fixes these
quantities by specifying a value for each of component.

Theorem 3. If:

Rλµνρ(x) = 0 ∀x ∈M (3.220)

then there exists a coordinate system in which:

gµν = ηµν (3.221)

i.e it is just Minkowski space (in some funny coordinate system). Thus a space-time is flat, iff
Rµνλρ = 0.

5.2. Ricci Tensor. This is constructed from the Riemann tensor. One can contract the first
two indicies and the last two indicies of the Riemann tensor as they are anti-symmetric, therefore:

Rλρµνg
µν = 0 (3.222)

To get non-zero values one has to contract the first and third or second and fourth indicies.
The resulting tensor is known as the Ricci tensor. It is a symmetric 4× 4 matrix, hence it has 10
components:

Rαβ = Rλαλβ (3.223)

≡ Rβγ (3.224)

There is another quantity, known as the Ricci scalar, that is defined as:

R = gαβRαβ (3.225)

It is also called the intrinsic curvature scalar, i.e it only depends on quantities in the metric
(in the space itself) and does not depend on how the space is embedded into a manifold.
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5.3. Weyl tensor. This is related to the conformal symmetry of the space-time, i.e the
symmetry of multiplying the metric by an arbitrary function of position. It is defined as:

Cαβµν ≡ Rαβµν −
1

2
gαµRνβ +

1

2
gανRµβ +

1

2
gβµRνα−

1

2
gβνRµα−

1

6
gανgµβR+

1

6
gαµgνβR (3.226)

and it is constructed by removing the trace of the Riemann tensor. The Riemann tensor is
anti-symmetric in α, β and µ, ν, so the components on the diagonal are zero. However, in general
αµ and ρν components are not and so need to be removed for the Weyl tensor. Therefore:

gαµCαβµν = 0 (3.227)

C is traceless on any two indicies.

Figure 16. Conformal scaling function

It has 10 independent components. Therefore Riemann can be thought of as Ricci +Weyl. The
Ricci components are fixed by the matter and the Weyl components come from the gravitational
waves.

Theorem 4. If:

Cαβγδ = 0 (3.228)

then there exists coordinates in which:

gµν = Ω2(x)ηµν (3.229)

This Ω2(x) is known as a conformal factor, so the space-time is conformally flat.

The function Ω2(x) is a local scaling, that does not change any angles, as shown in figure 16.

5.4. Bianchi identities. The Bianchi identity is an identity for the derivative of the Rie-
mann tensor and is defined via:

Rαβµν;κ +Rαβκµ;ν +Rαβνκ;µ = 0 (3.230)

Because the Riemann tensor is anti-symmetric on the indicies µ, ν, then just as before, when
a tensor is constructed by cycling three indicies, two of which are anti-symmetric, its the same as
anti-symmetrizing. Therefore the Bianchi identity is equivalent to:
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Rαβ[µν;k] = 0 (3.231)

The property of the Riemann tensor in Eq 3.207, follows in general from the Jacobi identity:

([∇µ[∇ν ,∇λ]] + cycles)ψ = 0 (3.232)

where ψ is some scalar. Then the Bianchi identity follows from a similar identity except with
the operator acting on a vector, V α

([∇µ[∇ν ,∇λ]] + cycles)V α = 0 (3.233)

The full formal derivation is quite lengthy and would take us too far of course at this point.3

6. Summary of differential geometry

There is an easy way to outline the concepts of differential geometry, especially in general
relativity. One can divide the concepts into three layers:

• The most fundamental object in differential geometry is a manifold. A manifold is for-
mally defined in definition 1, however, it can just be thought of as an object that locally
looks flat.

A manifold does not have any intrinsic way to define a coordinate system on it. Therefore
one is at liberty to choose which ever coordinates that are appropriate. The idea is to
describe certain geometric objects on the manifold, such that the coordinates being used
make no difference to the description. An obvious object is a tensor:

Tα1...αm
β1...βn

(3.234)

This is a (m,n) rank tensor. Mathematically, a tensor is defined by a transformation
law, given by Eq 2.1. A manifold also contains a tangent vector space at each point on
the manifold.

• It is not possible compare different points on a manifold, as taking a derivative of a tensor
at one point does not transform as a tensor, instead one has an extra term, as is shown
in Term 2 in Eq 3.36. To cancel of this term, the covariant derivative is introduced in
Eq 3.192. The covariant derivative gives a natural concept of parallel transport, which
is the idea that vectors at one point in the manifold can now be compared with vectors
in another point in the manifold. This also induces a special curve on the manifold, the
geodesic. The geodesic curves parallel transport their own tangent vector:

Uµ∇µU
ν = 0 (3.235)

The next thing to define is Riemann curvature. It is defined by the non-commutativity
of the covariant derivative, given in Eq 3.191. Once this has been introduced, the indices
of the Riemann tensor can be contracted to give the Ricci tensor and the Ricci scalar.

• Finally, one adds metric to the manifold, which gives a measure of distance of the man-
ifold. With a metric, the line element between two points is given by:

ds2 ≡ gµνdx
µdxν (3.236)

In general relativity the metric is defined in a way that its covariant derivative is
zero, which actually follows from the fact that the theory is torsion free.

3Full proof can be found on many websites, like http://www-personal.umich.edu/ jbourj/gr/homework%205.pdf





CHAPTER 4

Einstein’s field equations

This chapter will form the key result in the general theory of relativity; the Einstein field
equations. The chapter is deliberately kept very short as to highlight the importance of Einstein’s
equations.

1. Einstein tensor

Contract the first and third index of Eq 3.230:

gαµgβκ(Rαβµν;κ +Rαβκµ;ν +Rαβνκ;µ) = 0 (4.1)

Contracting the indices explicitly:

gαµgβκRαβµν;κ + gαµgβκRαβκµ;ν + gαµgβκRαβνκ;µ = gβκRβν;κ − gαµgβκRαβµκ;ν + gαµRαν;µ

= ∇βRβν −∇νR+∇αRαν = 0 (4.2)

where Rβν and Rαν are the Ricci tensors and R is the Ricci scalar. The first and third terms
are the same as α and β are dummy indicies, therefore:

∇β =
1

2
∇µR

= ∇β(Rβν −
1

2
gβνR) = 0 (4.3)

Einstein realised1 that this quantity was of fundamental important and would lead to being a
term in his field equations.

Definition 15. Another tensor is defined as:

Gβν ≡ Rβν −
1

2
gβνR (4.4)

This is known as the Einstein tensor.

Under this definition Eq 4.3 becomes:

∇βGβν = 0 (4.5)

2. Stress-energy tensor

In relativity, the density of matter (or energy) is described by the stress-energy tensor, Tµν .

Imagine a collection of particles, moving with a four velocity Uµ(x). Since the metric is Minkowski
like (i.e with the time component with the opposite sign), the four velocity must obey:

gµνU
µUν = −1 (4.6)

In the rest frame of a fluid, the four velocity is just (1, 0⃗) and the energy is given by ρ(x⃗)c2,
which is the mass density and the pressure, P (x⃗):

1In fact, in his first attempt, he got this term wrong!

67
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T 00 = ρ(x⃗)c2

T 0i = 0

T ij = P (x⃗)δij (4.7)

Thus, for an isotropic fluid:

Tµν = (P + ρc2)UµUν + Pηµν (4.8)

This equation has been motivated by the physics in the rest frame, however it is a tensor,
hence by definition it is the same in all coordinate systems, i.e all frames. Once can that this
tensor is correct in the rest frame explicitly:

T 00 = (P + ρc2)U0U0 + ρη00

= (P + ρc2)− P

≡ ρc2 (4.9)

T 0i = (P + ρc2)U0 U1︸︷︷︸
≡0

+P η0i︸︷︷︸
≡0

= 0 (4.10)

T ij = (P + ρc2)U iU j︸ ︷︷ ︸
≡0

+P ηij︸︷︷︸
δij

= Pδij (4.11)

The basic property of Tµν is that it is conserved, i.e:

∂µT
µν = 0 (4.12)

In fact, for an isotropic fluid, this condition gives rise to the Navier-Stokes equation.

Einstein said, Tµν , is the same in general relativity by simply replacing the flat metric, η, with a
general curvature metric g. Conservation of stress-energy then become a covariant derivative from
a regular derivative:

∇µT
µν = 0 (4.13)

This equation implies the conservation of energy and momentum. To see how, lets write out
Eq 4.13 at a given point (i.e setting the Γ’s to zero) and for the components in which ν = 0:

∂µT
µν = ∂0T

00 + ∂i(T
i0) = 0 (4.14)

If the equation is now integrated over space:∫
d3x⃗

(
∂0(T

00 + ∂i(T
i0))
)
= 0 (4.15)

Since the anti-derivative and derivative commute:

∂0

∫
d3x⃗T 00 +

∫
d3x⃗∂iT

i0 = 0 (4.16)

But: ∫
d3x⃗T 00 ≡ Total energy, E (4.17)

Thus Eq 4.16 becomes:
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∂0E +

∫
d3x(∂iT

i0) = 0 (4.18)

The second term is an integral over the divergence, so one can use Gauss’s divergence theorem,
that states that the total integral of the divergence of a vector is simply the flux integrated over
the closed surface. Therefore Eq 4.18 becomes:

∂E

∂t
= −

∫
surface

T i0dSi (4.19)

This is the statement that the rate of change of energy is equal to the flow of momentum over
a given surface. Now turn to the i components of Eq 4.13, with ν = 0:

∂0T
0i + ∂iT

ii = 0 (4.20)

Once again integrate over space:∫
d3x⃗0T

0i +

∫
d3x⃗∂iT

ii = 0 (4.21)

Once again use the commutativity between the derivative and anti-derivative:

∂0

∫
d3x⃗T 0i︸ ︷︷ ︸

Term a

+

∫
d3x⃗∂iT

ii = 0 (4.22)

Term a is the total momentum:

∂p⃗i
∂t

+

∫
d3x⃗∂iT

ii = 0 (4.23)

Once again use the divergence theorem for the second term:

∂p⃗i
∂t

= −
∫
T iidS (4.24)

But T ii is the pressure and hence integrating over an area will yield a force. So infact Eq 4.24
is simply the statement of Newton’s second law:

∂p⃗i
∂t

= −F (4.25)

Therefore Eq 4.13 encompasses the conservation of energy and momentum and it comes fun-
damentally from Noether’s theorem under the time and spatial translation invariance.

3. The field equations

By looking at Eq 4.13 and Eq 4.5, it is tempting to formulate the field equations as:

Gµβ ∝ Tµβ ⇒ Gµβ ≡ κTµβ (4.26)

The trick now is to realise that this equation must reduce to the Newtonian limit for suffi-
ciently small curvatures and thus a direct comparison to the equation in the Newtonian limit can
be used to calculate the coefficient κ.

The first thing to do is calculate Gαβ for the metric, that deviates at a very small scale from
the flat Minkowski metric:

gαβ = ηαβ + hαβ

gαβ = ηαβ − hαβ (4.27)

Now we can calculate the Riemann tensor:
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Rµνρλ =
1

2
(hµρ,νλ − hνρ,µλ − hµλ,νρ + hλν,ρµ) +O(h2) (4.28)

Its convenient to express Eq 4.26 in terms of the Ricci tensor and Ricci scalar:

Rαβ − 1

2
gαβR = κTαβ (4.29)

If one takes the trace of this equation:

gαβR
αβ − 1

2
gαβg

αβR = κgαβT
αβ

R− 1

2
(4)R = κgαβT

αβ

−R = κT (4.30)

So we can substitute Eq 4.30 into Eq 4.29:

Rαβ = κ(Tαβ − gαβT ) (4.31)

This equation is slightly easier to work with as all the T dependence on the R.H.S and the
only thing needed is R.

Next the R00 component needs to be extracted from the Riemann tensor (as the eventual aim is
to get the weak field approximation, which has an h00). The clever trick one has to realise now, is
that R00 is equivalent to R00, since the raising and lowering of the indicies will involve applying
gµν , gµν and since:

gµν = ηµν − hµν (4.32)

and the Riemann tensor is already of O(h), then applying g will give terms with ηh and O(h2),
but O(h2) terms are ignore and ηh will simply give 1, since η is flat. So lets proceed and calculate
R00:

R00 = ηµρRµ0ρ0 (4.33)

Here again the g will have η−h term that will give rise to O(h2) terms which are just ignored
for reasons given above, leaving only the η. Let’s look at Rµ0ρ0:

Rµ0ρ0 =
1

2
(hµρ,00 − h0ρ,µ0 − hµ0,0ρ + h00,ρµ) (4.34)

But recall that the field is also in a static limit, i.e all the time derivatives are zero. Which
means the expression simplifies to:

R00 = ηµρ
1

2
h00,µρ (4.35)

since we are ignoring time derivatives, µ and ρ are restricted to spatial components:

R00 = nij
1

2
h00,ij = −1

2
∇2h00 (4.36)

Therefore:

R00 = −1

2
∇2h00 = κ(T00 −

1

2
η00T ) (4.37)

For T , assume that Uµ ≈ (1, 0⃗) (fluid at rest) and P << ρc2 (e.g ideal gas P ≈ ρc2, v << c):

Tµν ≈


ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (4.38)
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Therefore:

T = ηµνT
µν = −ρc2 ⇒ T00 = ρc2 (4.39)

Substitute Eq 4.36 and Eq 4.39 into Eq 4.37:

−1

2
∇2h00 = κ(ρc2 +

1

2
(−ρc2))

=
κ

2
ρc2 (4.40)

Therefore:

−∇2h00 = κρc2 (4.41)

Now this can be compared to the previously calculated weak field limit in Eq 2.57, which
gives:

κ ≡ 8πG

c4
(4.42)

Finally, this gives the Einstein field equations:

Gαβ =
8πG

c4
Tαβ (4.43)





CHAPTER 5

Solutions to Einstein’s equations

This chapter could also be called cosmology, as solutions to Einstein’s equations give rise to
(almost) the entire field of cosmology. At the time that Einstein worked out this equation, he
did not imagine that the entire Universe would follow it. Of course, in the derivation of this
equation, the only things he used were some clever comparison between curved space and Newto-
nian gravity. But it turns out that all gravitational object follow this equation to extreme precision.

Einstein started to play around with his equation to see what they predicted about the uni-
verse. These equations are highly tangled up and are very difficult to solve without making many
simplifying assumptions. Einstein used his equations to try to produce a universe that was static,
as nobody knew about the expansion of the universe at that time. Many of the first models that
he proposed were incorrect, however there was one thing that was thought to be incorrect at first
(infact Einstein called it his ”Biggest blunder”) and now turns out to be true and that is the
cosmological constant.

To see how this comes in, recall the motivation of writing out the equation:

Gαβ ∝ Tαβ (5.1)

It was known that:

∇µT
µν = 0 (5.2)

Therefore one required a tensor that also satisfied this condition, to be able to equate it to
Tµν and it turns out that adding a term of the form:

Gαβ =
8πG

c4
Tαβ + cgαβ (5.3)

will still satisfy the fact that the covariant derivative of both sides would be zero. This is easy
to see, as one of the assumptions of general relativity is that the metricity is zero:

∇αg
αβ = 0 (5.4)

Using this additional term, Einstein shows that it is possible to make a static universe model,
however we shall see that this model turns out to be unstable.

1. Friedmann-Robertson-Walker(FRW) equation

To simplify the field equations solutions, one imposes some symmetries. These were first
discovered by Friedmann, Robertson and Walker and the symmetries are:

• Isotropy: Uniformity in all directions, i.e if one looks at any direction in space it looks
the same at large scales.

• Homogeneity: Symmetry under positional translation i.e i.e every point in space is the
same.

Together, these symmetries are sometimes called the maximal symmetry in space1. Together,
these two assumptions are called the ”cosmological principle”.

1This is infact a humbling assumption to make; the universe we live in has no special points, so there is
nothing special about our position in the universe. This is the Copernican view applied to the whole universe. We
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In d dimensions, the greatest number of possible symmetries of a manifold with a metric is:

d(d+ 1)

2
= # of possible symmetries (5.5)

The proof for this is quite long and can be found, for example, in [3]. In 3 dimensions, there
are 6 possible symmetries; defined by three different curved surfaces.

Example 9. One of the curved surfaces is a 3 sphere, S3. This has a positive curvature and
leads to a closed surface. The three sphere can be embedded in a 4 dimensional Euclidean space,
and is characterised by the following equation:

x2 + y2 + z2 + u2 + 1 (5.6)

This has 6 rotational symmetries.

Example 10. A 3 dimensional Euclidean space, E3, is an example of a flat space and is
characterized by:

x2 + y2 + z2 = 1 (5.7)

This appears to be the actual space that we live in and has 3 rotations and 3 translations as
part of its symmetry.

Example 11. The final surface is a 3 dimensional hyperbolic surface, H3, which has a negative
curvature. It can be embedded in a 4 dimensional Minkowski space and thus follows:

t2 − x2 − y2 − z2 = 1 (5.8)

Here one can have three ordinary rotations around (x, y), (x, z), (y, z) axis. Or one can do
have translations between (t, x), (t, y), (t, z) since these take t to spatial components and vice-
verse, these are called boosts. This appears to be the space-time we live in.

The metric for S3 is given by solving Eq 5.6:

x = sinχ sin θ cosϕ

y = sinχ sin θ sinϕ

z = sinχ cos θ

u = cosχ (5.9)

The metric imposed by the embedding space is:

ds2 = dχ2 + sin2 χ(dϕ2 + sin2 θdϕ2) (5.10)

This is the metric of S3 with maximal symmetry. One can ask what is the 2 dimensional space
at a fixed χ, the term in the bracket is obviously a 2 sphere, and sin2 χ acts as the radius squared
of the two sphere, so it is often defined as:

r ≡ sinχ (5.11)

This gives the line element:

ds2 =
dr2

1− r2
+ r2(dϕ2 + sin2 θdϕ2) ≡ dr2

1− r2
+ r2dΩ2

2 (5.12)

where Ω2 is the metric on S2. Here one has assumed that S3 had unit radius, if the radius
was r0, then:

are simply sitting on a rock around an average star and the universe would look the same to any other observer,
positioned somewhere else in the universe)
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ds2 =
dr2

1− r2

r20

+ r2dΩ2
2 (5.13)

for r << r0, the metric looks flat. Similarly for 3 dimensional hyperbolic space, H3:

t = coshχ

x = sinhχ sin θ cos θ

y = sinhχ sin θ sinϕ

z = sinhχ cos θ (5.14)

The metric induced from Minkowski space:

ds2 = −dt2 + d2x+ dy2 + dz2

= dχ2 + sinh2 χdΩ2
2 (5.15)

again defining:

r ≡ sinhχ (5.16)

This gives the metric with radius r0:

ds2 =
dr2

1 + r2

r20

+ r2dΩ2
2 (5.17)

These are the spatial metrics for the simplest most symmetrical universes. Now lets look at a
space-time metric:

ds2 = gµνdx
µdxν (5.18)

Lets also work in units with c ≡ 1 for simplicity:

ds2 = g00dt
2 + 2g0idtdx

i + gijdx
idxj (5.19)

Homogeneity and isotropy leads to g00 being constant, as a scalar function of space and time
that is translation invariant and rotational invariant has to be constant with respect to space,
therefore:

g00 ≡ g00(t) ̸= g00(x⃗) (5.20)

This can be absorbed in dt2 by simply rescaling the time coordinate accordingly:

− g00dt
2 ≡ dt′2 ⇒ t′ =

∫ t√
−g00(t)dt (5.21)

Therefore the metric becomes:

ds2 = −dt′2 + 2g′0idt
′dxi + gijdx

idxj (5.22)

The primes can now be dropped by simply defining new coordinates:

ds2 ≡ −dt2 + 2g0idtdx
i + gijdx

idxj (5.23)

Now lets look at the g0i term, it is a vector and a vector, by definition, has a direction. Since
the space is assumed to be isotropic, there cannot be any preferred direction, therefore g0i must
be zero.

The final term is the spatial part of the metric, gij . It is, in general, a function of (x, t). Under
maximal symmetry, the spatial components, x⃗, must be in S3,E3,H3. Thus it follows that gij is:
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gij(t, x⃗) = a2(t)γij(x⃗) (5.24)

where γij(x⃗) is the metric on S3,E3,H3. The result of isotropy and homogeneity is that we
can always choose coordinates, such that the line element:

ds2 = −dt2 + a2(t)γijdx
idxj (5.25)

This is known as the FRW line element, corresponding to the FRW metric. The quantity a is
the scale factor of the universe.

1.1. Introducing matter. Assume the simplest kind of matter; a perfect fluid:

Tµν = (ρ+ P )UµUν + Pgµν (5.26)

Isotropy implies all vectors are zero for reasons explained above, thus the four velocity must
reduce to:

Uµ = (U0, 0⃗) (5.27)

and from dτ2 = −gµνdxµdxν :

gµνU
µUν = −1 (5.28)

Since g00 = −1, then U0 ≡ 1, this is a future pointing time-like vector. This means Tµν has
the form:

Tµν =


ρ 0 0 0

0 Pγ11

a2 0 0

0 0 Pγ22

a2 0

0 0 0 Pγ33

a2

 (5.29)

and the metric tensor is:

gµν =


−1 0 0 0
0 γ11a2 0 0
0 0 γ22a2 0
0 0 0 γ33a2

 (5.30)

another useful quantity is the inverse of the metric tensor:

gµν =


−1 0 0 0
0 1

γ11a2 0 0

0 0 1
γ22a2 0

0 0 0 1
γ33a2

 (5.31)

Actually, isotropy and homogeneity force Tµν to take the form of a perfect fluid. When
thought about carefully this fact is coming from Einstein’s great insight that geometry and matter
are related, hence the type of matter in the universe will be constrained by the geometry of the
universe.

1.2. Einstein field equations for FRW metric. Let’s work out the Field equations for
the FRW metric. The equations are found by computing the Ricci tensor and scalar:

R00 = −3ä

a
R0i = 0

Rij = R
(3)
ij (γ) + (aä+ 2ȧ2)γij

R = 6

(
ä

a
+

(
ȧ

2

)2

+
k

a2

)
(5.32)
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where k is some constant that represents the curvature in the maximal symmetric solutions.
Thus the 00 component for the Einstein tensor is:

G00 = R00 −
1

2
g00R

= R00 +
1

2
R

= 3

((
ȧ

a

)2

+
k

a2

)
(5.33)

The other ingredient for the 00 field equation is the 00 component of the stress-energy tensor:

T00 = 8πkρ (5.34)

in fact:

S3 ⇒ k =
1

r20

H3 ⇒ k = − 1

r20

E3 ⇒ k = 0 (5.35)

Thus the 00 field equation is:

3

((
ȧ

a

)2

+
k

a2

)
= 8πkρ (5.36)

This is known as the Friedmann equation. As the r0 is a scale factor radius, it can be absorbed
into a(t), one can define r0 such that it is 1 for the present value, since it can simply be absorbed
into the scale factor. In this case the values of k are just ±1, 0 and this is how it is represented in
most literature. Another thing to note about this equation is that it only has first time derivatives
of a, thus it is known as a constraint equation (an equation involving ä is called an evolution
equation).

Now lets turn to the spatial equation. The Einstein tensor is:

Gij = Rij −
1

2
a2γijR

= ȧ2 + 2aä+ k (5.37)

and the stress and energy tensor:

Tij =
Pγij

a2
(5.38)

Therefore the spatial field equation is:

ȧ2 + 2aä+ k = 8πGρa2 (5.39)

As a final equation, it is useful to use the fact that the stress energy tensor is a constant with
respect to the covariant derivative:

∇µT
µν = ∂µT

µν + ΓµανT
αν + ΓναµT

µα

= 0 (5.40)

This implies:
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ρ̇ = −3ȧ

a
(P + ρ) (5.41)

this is also known as the continuity equation.

These three equations describe the evolution of a universe with maximal symmetry, also known
as the FRW universe. At this level of the discussion the pressure, P (t), is a completely arbitrary
function, ρ on the other hand must satisfy Eq 5.41. Infact, Eq 5.41 is not independent of the other
two as the Bianchi identity gives the continuity equation. There is one more equation that turns
out to be very useful, that is obtained by adding together Eq 5.39 and 5.36:

ä

a
= −4πG

3
(ρ+ 3P ) (5.42)

This is known as Raychaudhuri equation[4] and this is an evolution equation as it involves the
second time derivative of a. In general, the nature of Einstein’s field equations is such that the 00
equation is usually a constraint equation and the Gij equations are evolution equations.

1.3. Different types of matter. The evolution of the universe can be described once the
matter inside the universe has been defined. The type of matter is described by an equation of
state which, in general, relates the pressure to the volume.

Example 12. The simplest possibility is that a matter dominated universe, that has an
equation of state:

P = 0 (5.43)

This is sometimes referred to as dust and could possibly be a candidate for cold dark matter.
Putting this into the continuity equation gives:

ρ̇(t) = −3ȧ

a
ρ (5.44)

which has a solution:

ρ =
Cm
a3

(5.45)

Cm is some constant related to the mass of the particles. This makes sense as for a certain
amount of particles in a volume, the density decreases as the volume increases.

Example 13. A universe dominated by radiation, i.e photons etc, has and equation of state:

ρ̇ = −4
ȧ

a
ρ (5.46)

Putting this into the continuity equation:

Cr
a4

= ρ (5.47)

This has an extra 1
a factor compared to the matter particles, as the energy of photons is:

Eγ = hν

=
hc

λ
∝ 1

λ ≡ 1
a (5.48)

i.e the wavelength of the photons is simply stretched out by the expansion of the universe.
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Example 14. A universe dominated by the cosmological constant has the equation of state:

P = −ρ (5.49)

Therefore the continuity equation gives:

ρ̇ = 0 (5.50)

So the density of the dark energy is constant:

ρΛ = CΛ (5.51)

This is extremely strange, as the energy from this type of matter will just grow with the uni-
verse and yet it is still compatible with the conservation of the stress energy tensor with respect
to the covariant derivative2.

In flat space, the Friedmann equation reduces to:(
ȧ

a

)2

=
8πGCΛ

3
(5.52)

This gives the scale factor evolution:

a ∝ eHΛt (5.53)

where:

H2
Λ ≡ 8πG

3
CΛ (5.54)

So we see that the universe expands exponentially. As a side note; it is now understood that
the dark energy receives many contributions, such as energy from vacuum fluctuations in space
from all fields, energy from gluon condensates, the Higgs field with potential V (H), etc.

Example 15. Now lets consider a more general solution which contains ordinary matter,
radiation and a cosmological constant in the universe. The Friedmann equation is:

ȧ2 − 8πG

3
(ρm + ρr + ρΛ)C

2 = −k

ȧ2 − 8πG

3

(
Cm
a

+
Cr
a

+ ρΛa
2

)
= −k (5.55)

Compare this to:

E =
mv2

2
+ V (x) (5.56)

If m = 2, E = −k, then Eq 5.55 is just the equation of a particle moving in an effective
potential:

Veff (a) = −8πG

3

(
Cm
a

+
Cn
a2

+ CΛa
2

)
(5.57)

This type of universe has a few properties that are listed below.

• Positive Λ leads to de-Sitter space-time and negative Λ leads to anti-de Sitter space-time.
• The energy of a particle is constant. The energy, as stated above, is equal to −k. Hence

for different values of k, one gets different types of universes.

2To me, this phenomena seems to show that the universe is truly mathematical in its nature. The fact that
Einstein’s field equations allow for this arbitrary constant and nature obeys this equation and also has this constant
is an example that nature really does follow the rules of mathematics. At no point in deriving the Einstein equations
was it considered that there should be a parameter, Λ, that is also satisfied by the field equations.
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• k = 0. In this case, the scale factor starts out at 0 from the big bang and then simply
goes over the potential if Λ is positive. If Λ is negative, then there will come a point,
where the Veff = 0 line, will intercept the potential of the Λ line and hence the potential
energy will become greater than the kinetic energy and the universe will collapse in a so
called big crunch.

• k > 0. The universe is a sphere and will have a negative energy (as E = −k). Thus
the universe will expand upto a point, then it won’t have enough energy to climb up the
potential energy and hence roll back down to a = 0, again the big crunch scenario.

Another possibility is that the universe came in from infinity (i.e a is contracting in
on itself) and will again be unable to climb up the potential barrier and hence bounce
back to infinity, a so called ”bouncing universe”.

• k < 0. k is negative means the potential energy is positive and the solution is similar to
the k = 0 universe, except the evolution will be faster due to the longer kinetic energy.

Figure 17. Diagram showing the evolution of a FRW universe with matter,
radiation and a cosmological constant

1.4. Einstein static universe. Einstein’s first model of the universe was this static model
as shown by the point on the Figure 17. For a static universe one would let:

ȧ = ä = 0 (5.58)

and from the Raychaudhri equation:

ρ+ 3P = 0 (5.59)

and if the universe is dominated by matter and Λ, this is:

ρΛ + ρm + 3(PΛ + Pm) = 0 (5.60)

But PΛ = −ρΛ and Pm = 0, therefore:

ρm = 2ρΛ (5.61)

for Einstein’s static universe. From Friedmann’s equation:

k = 4πGρma
2 (5.62)

and recall that k is defined in terms of the radius of curvature and the scale factor, a:
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k =
a2

R2
c

(5.63)

Therefore:

Rc =
1√

4πGρ0
(5.64)

for the Einstein static universe. So the universe is finely balanced between matter pulling it
in and Λ pushing it out. But obviously this type of universe is unstable and was disregarded very
quickly.

1.5. Comparing the models with observations. The first step is to re-write the Fried-
mann equation by dividing by a2: ȧ

a︸︷︷︸
≡H


2

− 8πG

3
(ρm + ρr + ρΛ) +

k

a2
= 0 (5.65)

where H is the Hubble parameter. The different matter densities are re-defined by a matter
density parameter as:

8πGρm
H2

≡ Ωm (5.66)

and the same for ρr, ρΛ, ρk etc. Thus Eq 5.65 can be re-written as:

1− (Ωm +Ωr +ΩΛ +Ωk) = 0 (5.67)

Observations indicate:

Ωm = 0.28

Ωr = 0.0003

ΩΛ ≈ 0.72

Ωk = 0 (5.68)

Ωm includes cold dark matter, baryogenic matter and massive neutrinos.

1.6. Age of the universe.

Example 16. For a flat universe that only contains matter, the Friedmann equation becomes:(
ȧ

a

)2

=
8πG

3

Cm
a3

(5.69)

From Eq 5.45:

aȧ2 = c(constant) (5.70)

Which has the solution:

a ∝ t
2
3 (5.71)

Thus the Hubble parameter is:

H =
ȧ

a
=

2

3t
(5.72)

So the age of the universe can be found by substituting the current value of the Hubble
parameter into this equation:

tage =
2

3
H−1 (5.73)
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This is the age of the matter dominated universe and has a value of ≈ 1010 years. However,
stars have been observed that are 12 billion years old! which immediately implies that the universe
cannot contain matter by itself.

Example 17. For a universe with matter and Λ, the Friedmann equation gives:

t =

∫ atoday

0

da√
8πG
3 (Cma + CΛa2)

=
1

H

∫ 1

0

da√
Ωm
a +ΩΛa2

(5.74)

where atoday has been scaled to one. Now define:

a ≡ x
2
3 (5.75)

Thus Eq 5.74 becomes:

t =
2

3H

∫ 1

0

dx

(Ωm +ΩΛx2)
1
2

=
2

3

1

Ω
1
2

Λ

sinh−1

(
ΩΛ

Ωm

) 1
2

≈ 1

H
(5.76)

for observed values of ΩΛ and Ωm, this turns out to be about 14 billion years. One can also
include the radiation term:

1

H

∫ 1

0

da√
Ωm
a +ΩΛa2 +

Ωr
a2

(5.77)

But note that radiation only dominates at early times and since it is in the denominator,
the integrand will not be affected too much by it and hence in general the radiation term can be
ignored.

2. Schwarzschild solution

Black holes are the most interesting and paradoxical objects in physics. They continue to be
of enormous interest, both theoretically, because they raise a lot of paradoxes, and observationally,
because in the last decade or so, its become clear that black holes are everywhere in the universe,
not just in the center of galaxies.

In many ways, black holes are the simplest solutions to Einstein’s field equations. At first, spher-
ically symmetric solutions are studied. Realistic black holes are not spherically symmetric as
they are rotating and have an angular momentum, meaning they are axially symmetric but not
spherically symmetric. For these calculations, the cosmological constant is neglected, and the field
equations are considered in a vacuum:

Gαβ = 0 (5.78)

Since the space-time is assumed to be spherically symmetric, the solutions to the field equations
i.e the metric, is also spherically symmetric:

x⃗′ = Ox⃗ (5.79)

where:

OTO = 1 (5.80)

O is a rotation matrix:
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O ∈ {O(3)} (5.81)

A rotation matrix is generated by 3 generators, which represent rotations around the x⃗, y⃗, z⃗
axis. This means the line element should be built from only rotationally invariant quantities,
which in this case are:

Lorentz invariant quantities = {dt, t, r =
√
x2, x⃗ ·dx⃗ = rdr, dx⃗2 = dr2+r2(θ2+sin2 θdϕ2)} (5.82)

where x⃗ is:

x⃗ =

r sin θ cosϕr sin θ sinϕ
r cos θ

 (5.83)

The most general line element formed from these parameters is:

ds2 = gµνdx
µdxν = −C(r, t)dt2 +D(r, t)dr2 + 2E(r, t)drdt+ F (r, t)r2(dθ2 + sin2 θdϕ2) (5.84)

This equation can be simplified by a choice of coordinates. First define:

F (r, t)r2 ≡ r′2 (5.85)

This would mean that the area of a surface that is parametrised by θ and ϕ is just 4πr′2 and
then we can just re-label r′ to r:

ds2 = −C(r, t)dt2 +D(r, t)dr2 + 2E(r, t)drdt+ r2dΩ2
2 (5.86)

The next simplification is made to remove the cross terms in the line element i.e E(r,t), as it
is much easier to deal with a diagonal metric. To do this, we re-define the time as:

dt′ = η(r, t) (C(r, t)dt− E(r, t)dr) (5.87)

η is called the integration factor and is designed to ensure that the coordinate transformations
exists with dt′, i.e we expect:

dt′ =
∂t′

∂t
dt+

∂t′

∂r
dr (5.88)

Thus by comparing Eq 5.87 to 5.88, we get:

∂t′

∂t
= η(r, t)C(r, t)

∂t′

∂r
= −η(r, t)E(r, t) (5.89)

The trick now is to use the fact that partial derivatives commute:

∂2t′

∂r∂t
=

∂2t′

∂t∂r
(5.90)

Substitute Eq 5.89 for the partial derivatives:

∂

∂r
(η(r, t)C(r, t)) = − ∂

∂t
(η(r, t)E(r, t)) (5.91)

These are simply the conditions for t′ to exist. Given C(r, t) and E(r, t), this is a differential
equation for η. In fact it can be viewed as the evolution equation for η. So for any η(r, t0), the
equation determines η(r, t), for t > t0 (assuming E ̸= 0). All of this has been done to show that
t′ must exist, and now we can put this into the line element:
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Claim 14. The metric with t′ can be written as:

ds2 = − ∂t′
2

η2C
+ (D + C−1E2)dr2 + r2dΩ2

2 (5.92)

Proof 14. Substitute Eq 5.91 into 5.92:

ds2 = − 1

η2C
η2(Cdt− Edr)2 +

(
D +

E2

C

)
dr2 + r2dΩ2

2

= − 1

C
(C2dt2 − 2ECdtdt+ E2dr2) +Ddr2 +

E2dr2

C
+ r2dΩ2

2

= −cdt2 + 2Edtdr − E2dr2

C
+Ddr2 +

E2dr2

C
+ r2dΩ2

2

= −cdt2 + 2Edtdr +Ddr2 + r2dΩ2
2

= Eq 5.86 (5.93)

To further simplify, define:

ds2 ≡ −B(r, t)dt2 +A(r, t)dr2 + r2dΩ2
2

B(r, t) ≡ 1

η2C

A(r, t) ≡ D + C−1E2 (5.94)

This is the most general spherically symmetric solution to the Einstein field equations, in
coordinates that make the metric diagonal. Now one can calculate the Einstein field equations:

Gαβ = 0 ⇒ Rαβ − 1

2
gαβR = 0 (5.95)

Taking the trace of this equation:

gαβRαβ − 1

2
gαβgαβR = 0

R− 2R = 0

R = 0 (5.96)

Thus the Einstein equations in vacuum imply that:

Rαβ = R = 0 (5.97)

Computing the Christoffel symbols with x0 = t, x1 = r, x2 = θ, x3 = ϕ:

Γ0
00 =

1

2

Ḃ

B
,Γ0

01 = Γ0
10 =

1

2

B′

B
,Γ0

11 =
1

2

Ȧ

B

Γ1
10 = Γ1

01 =
Ȧ

2A
,Γ1

00 =
B′

2A
,Γ1

11 =
A′

2A
,Γ1

22 = − r

A
,Γ1

33 = −r sin
2 θ

A

Γ2
21 = Γ2

12 =
1

r
,Γ2

33 − sin θ cos θ,Γ3
31 = Γ3

13 =
1

r
,Γ3

32 = Γ3
23 = cot θ (5.98)

The ’ represents derivatives w.r.t r and the ˙ represents a derivative w.r.t t. The Ricci tensor is:

Rµκ = Rλµλκ = −(Γλµν,κ − Γλµκ,λ + ΓηµνΓ
λ
κη − ΓηµκΓ

λ
ηλ) (5.99)

Computing each of the components:
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R00 =
B′′

2A
− B′A′

4A2
+
B′

Ar
− B′2

4AB
− Ä

2A
+

Ȧ2

4A2
+

ḂȦ

4AB

R11 = −B
′′

2B
+
B′2

4B2
+
A′B′

4AB
+
A′

Ar
− Ä

2B
+
ȦḂ

4B2
+

Ȧ2

4AB

R10 =
Ȧ

Ar

R22 = 1− 1

A
+
rA′

2A2
− rB′

2AB
(5.100)

There is another component, R33 but that is related to the R22 component:

R33 = sin2 θR22 (5.101)

All other components of the Ricci tensor are 0 by spherical symmetry. Now one has to solve
these 4 coupled equations for A and B and these turn out to be surprisingly simple. First lets
look at the R10 equation:

∂A(r, t)

∂t
= 0 (5.102)

i.e A is independent of t, A(r) = A. This also means that all Ȧ terms will be zero. To make
further progress, compute:

R00

B
+
R11

A
(5.103)

The reason is to get rid of the second derivatives:

R00

B
+
R11

A
=

A′

A2
+

B′

ABr
= 0

= (AB′) = 0 (5.104)

Therefore:

AB = f(t) (5.105)

Now we can impose some boundary conditions. The space-time is required to be asymptoti-
cally Minkowski at large r. This implies that A→ 1 and B → 1 as r → ∞. But now it is obvious
that under these BC’s f(t) must be 1 as it is independent of r. Therefore:

B ≡ 1

A
(5.106)

But A = A(r) therefore B = B(r), i.e R must be time-independent. The only equation left to
use now is R22:

R22 = 1−B − rB′ = 0 (5.107)

This implies:

(rB)′ = 1 (5.108)

Therefore:

rB = r + C(constant) (5.109)

Which can be re-arranged for B:

B = 1 +
C

r
(5.110)

Substitute Eq 5.110 into 5.106:
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A =
1

1 + C
r

(5.111)

The fact that all the time dependence disappears is a consequence of ”Birkhoff’s theorem”.

Consider a mass, M, at large r, the gravitational potential must take on the Newtonian form:

ϕ = −GM
r

(5.112)

and recall from the correspondence with Newtonian gravity that h00 (the deviation from flat
space), is:

h00 = −2ϕ

c2
(5.113)

This implies that:

g00 ≈ η00 + h00 = −1− 2ϕ

c2
(5.114)

This fixes the constant, C:

B = 1− 2GM

rc2

A = B−1 (5.115)

So the line element becomes:

ds2 = −
(
1− 2MG

rc2

)
dt2 +

dr2(
1− 2GM

rc2

) + r2(dθ2 + sin2 θdϕ2) (5.116)

This is called the Schwarzschild metric and was discovered in 1915. The Schwarzschild metric
appears to be singular at:

r ≡ rs =
2GM

c2
(5.117)

and this is known as the Schwarzschild radius. In the 1960’s it was realised that this is actually
just a coordinate singularity. In other words, it is possible to remove this singularity by a change
of coordinates. An easy explanation to the apparent singularity is to consider the mass being
considered to be an extended object, like the sun. The value of rs is approximately 3 km and
this radius is obviously inside the sun. The solution obtained above is only valid in the absence
of matter, i.e outside the surface of the sun. Thus any results from these solutions cannot be
extrapolated to results in the sun. The field equations need to be solved separately inside the sun
and these will give solutions that do not contain this singularity. But if the sun collapses to a
radius of 3 km (assuming no mass loss), then there would be a singularity at rs.

2.1. Particle trajectories. Now we will think about falling into a black hole and thinking
about what will be observed. Let’s begin with the action, but if there are symmetries that leave
the equations of motion unchanged, then these symmetries can be used in the action to simplify
it. The action was previously:

S = −m
∫
dτ (5.118)

where cdτ = −gµνdxµdxν :

S = −mc2
∫ √

−gµν ẋµẋνdλ (5.119)
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where the ˙ represents a derivative w.r.t λ. This action is useful as it is invariant under re-
parametrising . However, the square root can prove to be a problem sometime, hence one uses a
different action.

Claim 15. The action in Eq 5.119, can be written as:

S = S(xµ(λ), e)
m

2

∫ (
gµν

ẋµẋν

e
− c2e

)
dλ (5.120)

where e is called ”einbein”, and is the square root of the 1-D metric on the world line:

λ→ λ̃(λ)

e→ dλ

dλ̃
e (5.121)

therefore edλ is invariant under re-parametrization of the world line.

Proof 15. The Euler-Lagrange equation for e gives:

−gµν ẋµẋν

e2
− c2 = 0 (5.122)

This gives:

e =
1

c

√
−gµν ẋµẋν (5.123)

substitute back into the action:

S = −mc
∫ √

−gµν ẋµẋνdλ (5.124)

which retains Eq 5.119.

The improved action gives both the constraint on the 4-velocity and the geodesic equation.
From Eq 5.122:

gµνU
µUν = −c2 (5.125)

where:

Uµ =
ẋµ

e
(5.126)

Thus the Euler-Lagrange (EL) equation for e gives the constraint on the four velocity and
similarly the EL equation for xµ gives the geodesic equation:

∂2xµ

∂τ
+ Γµνλ

∂xν

∂τ

∂xα

∂τ
= 0 (5.127)

where:

dτ = edλ (5.128)

For a photon, m = 0, thus the action is 0 and it cannot be used to get any meaningful results.
Instead, for photons, a different action is used:

S =
C

2

∫
ẋµẋν

e
gµνdλ (5.129)

where C is identified with the magnitude of the momentum of the photon:

pµ =
∂L

∂ẋµ
=
Cgµν ẋ

e
(5.130)

C gives a representation of what the energy of the photon is. The EL equation for e is:
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ẋµẋνgµν = 0 (5.131)

i.e the photons follow a null trajectory in space-time (as expected).

From Noether’s theorem, it has already been shown that if there is translational symmetry in
gµν w.r.t a particular coordinate, its conjugate momentum will be conserved. For example, for
the Schwarzschild metric, the metric is independent of t and ϕ, thus the corresponding conjugate
momentum for these objects is conserved.

2.2. Action of the Schwarzschild metric. It is convenient to work in a gauge (coordinate
choice):

e ≡ 1 (5.132)

Which means that from:

dτ = ed⇒ dτ = dλ (5.133)

So the geodesics are being parametrised by the proper time. The action is then:

S =
m

2

∫
dτ

(
−
(
1− 2

GM

rc2
c2
))

ṫ2 +
ṙ2(

1− 2GM
rc2

) + r2(θ̇2 + sin2 θϕ̇2) (5.134)

where the , represents a derivative w.r.t τ now. Now one can calculate the equations of motion:

d

dτ

(
∂L

∂ẋµ

)
=

∂L

∂xµ
(5.135)

For θ, the equations of motion are:

d

dτ
(r2θ̇) = r2 sin θ cos θϕ̇2 (5.136)

Note that we are studying the metric of a spherically symmetric black-hole (or any other
massive object), thus we can choose to consider θ = π

2 to simplfy the equations, without any loss
of generality. The particle will be moving on an equatorial orbit, and Eq 5.136 gives:

d

dτ
(rθ) = 0 (5.137)

Now the EL equation for ϕ:

d

dτ
(r2 sin2 θϕ̇) = 0

r2ϕ̇ = Lz(constant) (5.138)

where the m has been dropped as it is simply a scaling factor. The EL equation for t:

d

dτ

(
cṫ

(
1− 2GM

rc2

))
= 0 (5.139)

therefore:

cṫ

(
1− 2GM

rc2

)
≡ E(constant) (5.140)

This is interpreted as the energy as it comes from the symmetry under time translations. To
proceed, use the constraint:

gµν ẋ
µẋν = −c2 (5.141)

Which gives:
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−
(
1− 2GM

rc2

)
E2 +

(
1− 2GM

rc2

)−1

ṙ2 +
L2
z

r2
= −c2 (5.142)

This is the equation for a massive particle; if there was a photon, the only difference would
be that the R.H.S would be 0 as the photon has 0 proper time. Eq 5.142 can be re-written as:

ṙ2 + V (r)(eff)m = E2 (5.143)

where:

V (r)(eff)m ≡ c2
(
1 +

L2
2

r2c2

)(
1− 2GM

rc2

)
(5.144)

Thus the material particle moves with a kinetic energy in an effective potential, V (r)
(eff)
m .

This potential shows that the singularity at the Schwarzschild radius is not really a singularity.
As at r = rs the effective potential is just 0 i.e it does not diverge. The solution to Eq 5.143 can
be found by looking for r(ϕ) as supposed to r(t). In other words, the radius is now parametrised
by ϕ:

Figure 18. Parametrising r by ϕ

So for a given value of ϕ, one obtains a value for r(ϕ). We have:

Lz = r2ϕ̇ (5.145)

Therefore:

ṙ2 = r′2ϕ̇2 =
r′2L2

z

r4
(5.146)

where the ’ represents a derivative w.r.t ϕ. Now define:

u ≡ 1

r
(5.147)

It turns out that the Newtonian problem of 1
r potentials become a simple harmonic oscillation

(SHO) under this transformation. Therefore one gets:

ṙ2 − L2
zu

′2 (5.148)

Putting these ingredients into Eq 5.143:
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u′2 =
E2 − c2

L2
z︸ ︷︷ ︸

T1

− u2︸︷︷︸
T2

+
2GMu

L2
z︸ ︷︷ ︸

T3

+
2GMu3

c2︸ ︷︷ ︸
T4

(5.149)

In this form, T2 and T3 are independent of C, and are the usual Newtonian terms. T1 is just
a constant and T4 is the relativistic correction.

To solve this equation, differentiate w.r.t ϕ, to eliminate the constant term T1:

2u′u′′ = −2u′u+
2GMu′

L2
z

+
6GMu2u′

c2
(5.150)

Canceling u′:

u′′ = −u︸︷︷︸
Tα

+
GM

L2
z︸ ︷︷ ︸

Tβ

+
3GMu2

c2︸ ︷︷ ︸
Tγ

(5.151)

This equation can be solved by an expansion in c2. When v << c2, the Tγ term can be
ignored:

u′′ = −u+
GM

L2
z

(5.152)

The idea now is to calculate the solution for this linear differential equation and compute the
Tγ as a perturbation, using perturbation theory. The total solution will then be:

u = u0 +
u1
c2

+ ... (5.153)

where u0 is the solution to Eq 5.152 and u1 will be the perturbation term. u0 is simply the
solution to a Harmonic oscillator, displaced by GM

L2
z
. The minimum of the harmonic oscillator is

when:

u =
GM

L2
z

(5.154)

This is the in-homogenous solution. The homogenous solution δu, needs to be added to this,
which is:

δU = A1 cosϕ (5.155)

where A1 is an arbitrary constant. Combining the two terms, gives the general solution:

u =
GM

L2
z

+A1 cosϕ (5.156)

which can be re-defined as:

u ≡ GM

L2
z

(1 + e cosϕ) (5.157)

where e is defined as the ellipcity of the orbit. It parametrizes how much the orbit is deviating
from a circular orbit. Since:

r =
1

u
≡ r0

1 + e cosϕ
(5.158)

this is an equation of an ellipse, with r0 as the average radius. Now lets calculate the perturbing
correction to the orbit. Substitute Eq 5.153 into 5.151 and equate the coefficients of 1

c2 :

u′′1 = −u1 +
3GM

c2

(
u0 +

1

c2
u1

)
≡ −u1 +

3GM

c2
u (5.159)
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Substitute Eq 5.157 into 5.159:

u′′1 = −u1 +
3GM

c2
(GM)2

L4
z

(1 + e cosϕ)2

= −u1 +
3GM

c2
(GM)2

L4
z

(1 + 2e cosϕ+ e2 cos2 ϕ) (5.160)

where the 1
c4 terms have been neglected. This equation looks like a harmonic oscillator equa-

tion for u, which is driven by a force in the second term. This force is oscillating (with a constant
force aswell but that is not important as it will displace an object slightly, but the displacement
will not grow).

There is a term with e2 cos2 ϕ, which has twice the frequency compared to the oscillation of
u, and the term with e cosϕ, which has the same frequency will cause a resonance affect in the
oscillator and will cause a growth in the displacement. Einstein realised that this relativistic cor-
rection to the Newtonian orbit, actually builds over every orbit, even though the term is considered
a perturbation.

This lead to one of the most dramatic early test of GR. Let’s re-write the solution with just
the resonance term, as that is the one that will cause the major deviation:

u′′ = −u1 + ϵ cosϕ (5.161)

where:

ϵ ≡ 2(GM)2e

L2
zc

2
(5.162)

The solution to this equation is:

u1 =
ϵ

2
ϕ sinϕ (5.163)

So it is clear that this oscillation has an amplitude that grows with ϕ. Therefore the total
solution is:

u ≈ GM

L2
z

(
1 + e cosϕ+ 3

(GM)2

L2
zc

2
ϕ sinϕ

)
(5.164)

To interpret this growing perturbation, imagine that the coefficients of sinϕ are very small
and hence one can use the trig identity:

cosA−B = cosA cosB + sinA sinB B << 1 ⇒ cosB ≈ 1, sinB ≈ B (5.165)

Therefore the solution can be re-written as:

u ≈ GM

L2
z

(
1 + e cos

(
ϕ

(
1− 3(GM)2

L2
zc

2

)))
(5.166)

So we see that the offset of this resonance is to actually change the orbit of the object around
the black hole.

As an example, lets work out the precession (change in ϕ of maximum radius per orbit):

∆ϕ = Gπ

(
GM

Lz

)2
1

c2
=

6πGM

r0c2
(5.167)

where r0 is the average radius of the orbit and:

GM

r0
≈ vescape (5.168)

Therefore:
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∆ϕ ≈
v2escape

c2
(5.169)

Its largest for smallest r0 For mercury, one gets:

∆ϕ = 42.98′′/century (5.170)

The observations of the 19th century had discovered an anomaly of 43′′/century. This is a
remarkable prediction of general relativity and was the first confidence boost for Einstein that he
was on the right track.

Figure 19. Precession of orbits due to relativistic corrections

2.3. Motion of photons. Eq 5.144 simplifies for photons to:

V (r) =
L2
z

r2

(
1− 2GM

rc2

)
(5.171)

Let’s re-write the potential in terms of the Schwarzschild radius:

Vγ(r) =
L2
z

r2

(
1− rs

r

)
= L2

z

(
1

r2
− rs
r3

)
(5.172)

The maximum of the potential is:

∂Vγ(r)

∂r
= 0 ⇒ rmax =

3

2
rs (5.173)

Therefore:

rmax =
3GM

c2
(5.174)

At this point the photon orbits the mass at a constant radius. Again setting:

u ≡ 1

r
(5.175)

and follow the same procedure as was done for the photon, yields the equation:
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u′′ = − u︸︷︷︸
T1

+
3GMu2

c2︸ ︷︷ ︸
T2

(5.176)

where T1 is the Newtonian result and T2 is the general relativity correction. The term that
is missing here, is the one that shifted the center of the harmonic oscillator. Here the geometry
shows:

Figure 20. Impact parameter geometry

Therefore:

u0 =
1

r
=

sin

b
(5.177)

This is the zeroth order solution. Putting this into Eq 5.176:

u′′1 + u1 =
3GM

2b2c2
sin2 ϕ =

3GM

2b2c2
(1− cos 2) (5.178)

Which has the solution:

u1 =
3GM

2b2c2

(
1 +

1

3
cos 2ϕ

)
+A sinϕ︸ ︷︷ ︸

Tα

(5.179)

where A is a constant. Tα is not important as it is simply another harmonic oscillator solution
and by choosing appropriate boundary/initial conditions, it can be absorbed into the sinϕ term
from before. So the overall solution is:

u =
1

b
sinϕ+ u1 (5.180)

as r → ∞, u → 0 and thus ϕ = 0 without u1 term. If the u1 terms is not neglected, then it
is slightly different. Firstly, one expects ϕ << 1, i.e weak field approximation, therefore one can
define:

ϕ ≡ ϵ << 1 (5.181)

So Eq 5.180 becomes:
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u ≈ ϵ

b
+

3GM

2b2c2

(
1 +

1

3

)
= 0 (5.182)

Therefore:

ϵ = −2GM

c2b
(5.183)

This is the deflection in ϕ. In other words, if the photon is followed to +∞, instead of ϕ→ 0,
it becomes slightly negative, ϕ → ϵ, this is the correction from general relativity. So the total
deflection angle is:

∆ϕ =
4GM

c2b
(5.184)

if we take the values of the sun, M =Msun and b = rsun, then:

δϕsun = 1.75′′ (5.185)

i.e photons just grazing the surface of the sun are deflected by this angle. This prediction of
general relativity was measured by Eddington and was also proved to be correct.

2.4. Interior of black-holes. Recall the Schwarzschild metric:

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2
2 (5.186)

r = rs, the metric is singular, but this is just a coordinate singularity. For r < rs, the co-
ordinate r is time-like, t is space-like. This means that if all other coordinates are fixed and r is
varied, then the line element is negative, meaning its a time-like direction. If t is varied on the
other hand, then the line element increases and hence is space-like.

Consider radial, light rays, i.e null geodesics. In this case dΩ ≡ 0, thus the metric simplifies
to:

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 (5.187)

For photons ds2 = 0: (
1− rs

r

)
dt2 =

(
1− rs

r

)−1

dr2 (5.188)

Therefore:

dt = ± dr(
1− rs

r

) ≡ ±dr
(
1 +

rs
r − rs

)
(5.189)

Integrating:

t = ±
(
r + rs ln

(rs
r

− 1
))

+ constant (r > rs) (5.190)

For r < rs:

t = ±
(
r + rs ln

(
1− r

rs

))
(5.191)

As r → 0:

t ≈ ±
(
r + rs

(
− r

rs

))
=

r2

3r2s
+ ... (5.192)

Therefore:

t = ±
(
− r2

2rs

)
+ constant (5.193)
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The signs are now flipped! the positive solution gives the in going light ray and the negative
solution gives the outgoing light ray. In other words, it just shows what was previously stated,
that spatial and time dimensions are flipped.

Figure 21. Light cones approaching the event horizon; light cones shrink in
width as they approach the event horizon. After the horizon, the space and time
components are flipped and hence the light cone is rotated by 90◦

Now lets change the coordinate to ingoing ”Eddington-Finkelstein” coordinates. The idea
behind this is to say that along a null ray, the solutions are given by Eq 5.190 and 5.193, where
the constant does not change. This means if one defines a coordinate in which the entire terms in
these equations is the coordinate, then the null ray will be simply constant or zero:

ingoing null ray ≡ u ≡ constant (5.194)

where:

u ≡ t+ r + ln

∣∣∣∣ rrs − 1

∣∣∣∣ (5.195)

notice the modulus sign has been included so that the coordinate is defined even when r < rs.
The coordinate transformation is singular if r ≡ rs. This is expected, as the original coordinate
system had a singularity aswell, and to remove that singularity one must also include another
singularity to cancel it:

du = dt+
dr

1− rs
r

(5.196)

Therefore:

dt = du− dr

1− rs
r

(5.197)

Substitute this into the line element in Eq 5.187:

ds2 = −
(
1− rs

r

)
du2 + 2dudr + r2dΩ2

2 (5.198)

If r = rs:

ds2 = 2dudr + r2dΩ2
2 (5.199)
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which gives the metric tensor:

gµν =


0 1 0 0
1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (5.200)

In these coordinates the metric is non-singular which confirms that the singularity at r = rs, is
a coordinate singularity. Now one can follow an ingoing light ray in these new-coordinates, which
are just curves of constant u. Inside the black hole (r < rs):

u = constant ⇒ t = −r − rs ln

∣∣∣∣1− r

rs

∣∣∣∣+ u(≡ constant) (5.201)

Figure 22. Track of ingoing light ray in u(r) coordinates then converted into
the singular coordinates

Notice the direction of time here. As time is increasing, r is decreasing. This is because the
null ray being followed had an increasing time at r = ∞ (the null ray was on the future part of
the light cone). Following the null ray beyond the event horizon leads to the null ray decreasing
in r after rs. Therefore one can infer that in the region of space:

0 < r < rs (5.202)

the decreasing r must lead to an increasing time. Which in essence tells us that the null ray
has to hit the singularity (i.e since the time keeps moving forward, the r will continue to decrease
until it hits the singularity). Therefore there seems to be an ”end to time” at r = 0.

The trajectory of radial light rays can be obtained from the metric in Eq 5.198, where ds = dΩ = 0:(
1− rs

r

)
du2 = 2dudr (5.203)

Which gives:

dr =
1

2

(
1− rs

r

)
du (5.204)

or:

du = 0 (5.205)
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Define a new time, t′, such that u = t′ + r; this implies that the ingoing null rays have:

r = u− t′ (5.206)

i.e they are lines at 45◦. The outgoing null rays in these new coordinates can be re-written as:

du =
2dr

1− rs
r

= dt′ + dr (5.207)

This gives:

dt′ =
r + rs
r − rs

(5.208)

The ingoing rays are shown below:

Figure 23. Outgoing lines r > rs increase in steepness as r decreases.

at r = r0, the outgoing lines have an infinite radius, i.e they become straight lines at r = rs.
This affect is known as the tipping of the light cones. When r < rs, the gradient is negative
and the light cone is forced into the singularity. Note that the coordinates have been chosed to
correspond to ingoing rays. Now lets use coordinates corresponding to outgoing rays:

v ≡ t− r0 ln

∣∣∣∣ rrs − 1

∣∣∣∣ (5.209)

Which gives the metric:

ds2 = −
(
1− rs

r

)
dv2 − 2dvdr + r2dΩ2

2 (5.210)

This is also regular at r = rs. For outgoing null geodesic:

t = r + rs + ln

∣∣∣∣ rrs − 1

∣∣∣∣+ v(≡ constant) (5.211)

However, this implies the direction of increasing r,corresponds to increasing time! This is
direct contradiction to the result obtained from the u(r) coordinates, as there are two regular
coordinate systems, which disagree about what is the direction for the part of the light curve. The
fact that r increases with time in these coordinates inside the horizon means that a particle will
fly out of the black hole!. This is not thought to be possible, as this would mean the black hole
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would radiate particles from the singularity and an external observed would be able to see the
singularity directly.

Figure 24. Track of ingoing light ray in v(r) coordinates then converted into
the singular coordinates

Actually each of these descriptions, describe a different interior. So there are actually two
interiors to a black hole! Both versions of the interior have an opposite direction of time, both
connected to the same exterior horizon.

2.5. Kruskal coordinates. Martin Kruskal was the first person to realise this duality of
interiors of black holes (while he was an undergraduate!) and decided to combine the coordinate
systems for outgoing and ingoing null geodesics:

r > rs :

u = t+ r + rs ln
(
r
rs

− 1
)
≡ constant outgoing photons

v = t− r − rs ln
(
r
rs

− 1
)
≡ constant incoming photons

(5.212)

The derivatives are:

du = dt+
dr

1− rs
r

dv = dt− dr

1− rs
r

(5.213)

The line element for Schwarzschild is:

ds2 = − (1− rsr) dudv + r2dΩ2
2 (5.214)

Combining the equations for u and v:

r + rs ln

(
r

rs
− 1

)
=
u− v

2
(5.215)

From this:

r

rs
− 1 = e−

r
rs e

u−v
2rs (5.216)

Therefore:
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1− rs
r

=
rs
r
e−

r
rs e

u−v
2rs (5.217)

Which gives the metric:

ds2 = −rs
r
e−

r
rs e

u−v
2rs dudv + r2dΩ2

2 (5.218)

This metric looks good as it is not singular anywhere except at r = 0, which really is a
singularity and thus cannot be removed. Now we define a new set of null coordinates:

U ≡ rse
− u

2rs

V ≡ rse
− v

2rs (5.219)

So the metric is:

ds2 =
4rs
r
e−

r
rs dUdV + r2dΩ2

2 (5.220)

Finally, set:

U ≡ X + TV ≡ X − T

X is a new radius. The metric then becomes:

ds2 =
4r3
r
e−rrs

(
−dT 2 + dX2

)
+ r2dΩ2

2 (5.220)

where:

X2 − T 2 = UV = r2se
U−V
2rs (5.221)

Substitute for e
U−V
2rs from Eq 5.217:

X2 − T 2 = r2s

(
r

rs
− 1

)
errs ≡ f(X2 − T 2) (5.222)

This gives r as a function of X2 − T 2, which is how the metric should be interpreted.

0.5 1.0 1.5 2.0

2

4

6

Figure 25. This shows f(X2 − T 2) has a 1 to 1 mapping to r.

So we see that the function f(X2 − T 2) corresponds to one value of r as long as r is positive.
Even when f(X2 − T 2) is negative, there is a 1 to 1 correspondece to r except at −r2s . In other
words, this function only exists on r > 0, for X2 − T 2 > −r2s .

Converting back to the t coordinate:
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t =
u+ v

2
= rs ln

(
U

V

)
= rs ln

∣∣∣∣X + T

X − T

∣∣∣∣ (5.223)

At X = T , t = rs ln∞ = ∞, and similarly for −rs; thus the straight lines at 45◦ correspond
to lines with t = ±∞ in Figure 26

Figure 26. Dual interior of black holes

So we see that there are two interiors. In R2 and R3 a particle from R3 following a null
geodesic can actually come out of the interior (these objects are called ”white holes”), i.e out of
the black hole, as r increases with t. And similarly a particle following a null geodesic in R2 will
not be able to exit the interior as r decreases with t.

Kruskal found four regions to this solution. This is called the maximal geodesic extension of
Schwarzschild and gives a deep insight into what the Schwarzschild solution really is. There are
only two possibilities for particles; either a particle in the Schwarzschild metric will hit the sin-
gularity or it will continue to infinity. So there are no special points in space that contain infinities.

But this is not all, this solution also shows that one can go to infinity in R1 or to infinity in
R3 (i.e flat space-time in two regions). So there are two asymptotic regions of space-time (or two
universes!), that are connected by a so called Einstein-Rosen bridge.

The light from R4 can never reach R1 (which is where we are) as the light will travel along
the line t = ∞ and this will asymptotically approach the singularity, hence will never be able to
reach R1 and the same holds from light going from R1 to R4.

In all physical process that give rise to black holes, i.e stellar death, R3 and R4 do not exist
as far as what has been observed so far. This is because at early time, there is just a star in space
and the Schwarzschild metric is only valued outside the star. As the star collapses, at a certain
time, it falls across its Schwarschild radius, and then all the particles enclosed in this radius must
collapse to this singularity.

In fact this solution gave rise to a whole new field in general relativity of wormholes, which
have the same concept of black holes in different metrics, such as the Kerr metric, connecting two
causally disconnected regions of space-time with a bridge, also called a wormhole. These types of
objects are thought to be unstable however, under certain conditions can be stabilized, [5], but
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have never been observed in nature. However, as they are correct solutions to Einstein’s field
equations, they have to be given some consideration (in fact science fiction movies and books have
also given these solutions a lot of consideration!).

Figure 27. Einstein-Rosen bridge connecting two asymptotically flat space-times

3. Kerr black holes

Black holes are formed by collapsing stars and generally, stars will carry some angular mo-
mentum thus the black holes formed from these stars will have some rotation. It took a long time
for the solution to Einstein’s field equations, for a rotating black hole to be found. Kerr was the
first one to find it in 1963 and it was a surprising result that this problem had an analytic solution.
The metric corresponding to a rotating black hole is:

ds2 = −
(
1− rsr

ρ2

)
dt2−rsar sin

2 ϕ

ρ2
(dtdϕ+ dϕdt)+

ρ2dr2

∆
+ρ2dθ2+

sin2 θ

ρ2
(
(r2 + a2)2 − a2∆sin2 θ

)
dϕ2

(5.224)
where:

∆2 ≡ r2 − rsr + a2

ρ2 ≡ r2 + a2 cos2 θ

rs ≡ 2GM

c2

a ≡ J

Mc
(5.225)

where J is the angular momentum. These coordinates are called Bayer-Lindquist coordinates.
The coordinates that Kerr use were actually more clever and they shall be used later, however,
these coordinates allow for easy comparison to the Schwarzschild metric.

Claim 16. In the limit a → 0, and fixed M , the Kerr metric reduces to the Schwarzschild
metric
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Proof 16. If a = 0:

∆2 = r2 − rsr

ρ2 = r2 (5.226)

Therefore the line element is:

ds2 = −
(
1− rsr

r2

)
dt2 +

r2

r2 − rsr
dr2 + r2dθ2 +

sin2 θ

r2
(r2)2dϕ2

= −
(
1− rs

r

)
dt2 +

r

r − rs
dr2 + r2dθ2 + r2 sin2 θdϕ2

= −
(
1− rs

r

)
dt2 +

(
1

1− rs
r

)
dr2 + r2dθ22

= Eq 5.116 (5.227)

In instead, one takes the limit that M → 0 at fixed a, one would expect the metric to be
Minkowski, but the metric gives:

ds2 = −dt2 + (r2 + a2 cos2 θ)

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2 (5.228)

This does not look like flat space at first sight. To check it, one has to compute the Riemann
tensor and it turns out that it is zero and therefore the space is indeed flat. Therefore there must
be a coordinate system in which the metric looks Minkowski. To motivate the correct coordinate
transformation, lets look at the spherical polar coordinates in Minkowski space:

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (5.229)

The spatial part of Eq 5.228 looks similar to the spherical polars in Minkowski space, in fact
the radius seems to be transformed into (r2 + a2)

1
2 , so lets try the coordinates:

x = (r2 + a2)
1
2 sin θ cosϕ

y = (r2 + a2)
1
2 sin θ sinϕ

z = r cos θ

t = t (5.230)

Claim 17. The coordinate transformations in Eq 5.230, will lead to a Minkowski metric

Proof 17. Start of by computing the derivatives of Eq 5.230:

dx =
rdr

(r2 + a2)
1
2

sin θ cosϕ+ dθ(r2 + a2)
1
2 cos θ cosϕ− (r2 + a2)

1
2 sin θ sinϕdϕ

dy =
rdr

(r2 + a2)
1
2

sin θ sinϕ+ dθ(r2 + a2)
1
2 cos θ sinϕ+ (r2 + a2)

1
2 cos θ cosϕdϕ

dz = dr cos θ − dθr sin θ (5.231)

therefore:

dx2 + dy2 + dz2 =
r2 + a2 cos θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdϕ2 (5.232)

which is the spatial part of Eq 5.228. These coordinates are called ellipsoidal coordinates.
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when r is a constant:

y2 + z2 = (r2 + a2) sin2 θ + r2 cos2 θ

= r2 + a2 sin2 θ (5.233)

when r = 0 ⇒ z = 0 and:

y = a sin θ (5.234)

therefore y simply oscillates with θ. This metric has appears to have to singularities; one at
∆ = 0 and one at ρ = 0. We will see that the singularity at ∆ = 0 is actually a coordinate
singularity and therefore it can be removed by an appropriate coordinate transformation. The
singularity at ρ = 0 implies:

ρ2 = r2 + a2 cos2 θ = 0 (5.235)

The only way this equation can be true is if both r = 0 and cos θ = 0 ⇒ θ = ±π
2 , as a is non

zero. So infact the singularity in this case is not actually a point, it is a ring. This can be seen by
the definition of these coordinates:

x2 + y2

r2 + a2
+
z2

r2
≡ 1

z ≡ r cos θ (5.236)

Therefore for this singularity:

x2 + y2 = 1 (5.237)

which is a ring (circle) in two dimensions.

3.1. Event horizons.

Definition 16. An event horizon is a surface beyond which it is not possible to communicate
with observers at infinity.

These surfaces have a property, that is their area, which is actually associated with the entropy
of a black hole. It can be shown that any space-time surface lying inside the event horizon has
the same area.

Example 18. For the Schwarzschild metric, Eq 5.116, if we choose a surface of constant t at
the event horizon, which in this case is the Schwarzschild radius, rs, the metric reduces to:

ds2 = r2sdΩ
2
2 (5.238)

Integrating over the solid angle, simply gives:

Area = 4πr2s (5.239)

In the Schwarzschild/Kerr metric, the condition for an event horizon is that:

gµν∂µr∂νr = 0 (5.240)

where:

Schwarzschild ⇒ grr = 1− rs
r

Kerr ⇒ grr =
∆

ρ2
(5.241)

For large r, the metric is expected to asymptotically become flat. The quantity ∂µr becomes
null at the event horizon, which means a light ray will simply orbit the surface at the same radius.
For the Kerr metric, grr = 0 when ∆ = 0:
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∆ = r2 − rsr + a2 = 0

r =
rs
2

±
√
r2s
4

− a2 ≡ r± (5.242)

where we have assumed
r2s
4 > a2. When:

J =
GM

c2
(5.243)

the black hole is dais to be in the extremal limit, as the black hole cannot rotate any faster
than this.

When Kerr first derived his solution, the coordinates he used were different and given by:

dT = dr + dr
rsr

∆
R = r

Θ = θ

Φ = ϕ−
∫ r dr

∆

dΦ = dϕ− dr

∆
(5.244)

This gives the metric:

ds2 = −dT 2+ dR2+2a sin2 θdrdΦ+ ρ2dΘ2+(R2+ a2) sin2 ΘdΦ2− rsR

ρ2
(
dR+ a sin2 ΘdΦ+ dT

)2
(5.245)

where:

ρ = R2 + a2 cos2 Θ ≡ r2 + a2 cos2 θ (5.246)

The reason to used these coordinates is that there is no ∆ in this metric, which means there
is no singularity at ∆ = 0. These coordinates are called Kerr-Eddington-Finkelstein, as they are
analogous to the Eddington-Finkelstein coordinates for the Schwarzschild metric. However even
in these coordinates, notice that ρ = 0 is singular.

3.2. Stationary limit surface. Beyond the surface of the stationary limit, it is not possible
to have a constant r, θ, ϕ. This surface is defined by:

gµν ẋ
µẋν = −1 (5.247)

for a massive particle. In the stationary limit, by definition:

ṙ ≡ ϕ̇ ≡ θ̇ ≡ 0 (5.248)

Therefore the only way Eq 5.247 can be true is if g00 < 0. Thus the limiting case for particles
being stationary is:

g00 = 0 (5.249)

Therefore:

− 1

ρ2
(r2 + a2 cos2 θ − rsr) = 0 (5.250)

Which has the solution:

r
(s)
± =

rs
2

±
√
r2s
4

− a2 cos2 θ (5.251)
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Therefore:

rs+ > r+ when θ ̸= 0 (5.252)

when θ = 0 ⇒ r
(s)
+ = r+. The region:

r+ < r < r
(s)
+ (5.253)

is called the Ergosphere. In this region, the space-time is rotating so fast that a particle cannot
stay stationary in it.

Figure 28. Ergosphere of a rotating black hole

3.3. Penrose process. Because the ergosphere is outside the event horizon, it is still possi-
ble to communicate with a particle in this region of space. Penrose showed that it is possible to
obtain energy from the black hole from the ergosphere.

The idea is to put an object into the ergosphere and then have the object throw a particle into
the black hole and then the particle comes out of the ergosphere with more energy then it had
in the beginning. This is because the conservation of energy is related to the coordinate t; it is
the conjugate momentum of t. Now, by the definition of the ergosphere, g00 is zero, which means
there is not time component in the metric and hence the Lagrangian. Since E is the canonical
momentum conjugate to t, it is given by:

E =
∂L

∂t
= 0 (5.254)

Therefore any variation in time must leave the energy unchanged, i.e energy is conserved.

If the trajectory of a particle is parametrised by a parameter λ, then:

E ∝ ∂t

∂λ
(5.255)

In general t will increase with λ, i.e a future pointing particle will have a positive value of ∂t
∂λ ,

thus the energy will be positive. This means that the future moving particles (which are the only
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allowed particles) can only have access to these positive energy states. The negative energy states
are in a causally disconnected region of space-time3

Figure 29. Lines of constant energy outside Ergosphere

On the other hand, inside the ergosphere the space and time coordinates are flipped, which
means that any future moving particle can exist in both positive and negative energy states! This
bizarre behavior is still not fully understood, however this is what leads to a particle being able
to come out of the ergosphere with more energy than it had before. As if an object throws a
particle in the negative r direction, i.e towards the black hole from a positive r position, then it
will have to gain the energy that the particle moving in the negative r direction will be loosing as
the energy is conserved.

Figure 30. Lines of constant energy inside Ergosphere

3This shows another strange property of the hypothetical particles, tachyons, that can travel faster than the
speed of light. Not only would they violate the natural speed limit, but they would also not conserve energy!
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CHAPTER 6

Mathematical framework

1. Differentiating of a manifold

Manifolds have been discussed in Chapter 3. The main type of derivative discussed in there was
the covariant derivative, Eq 3.192. However this is not the most general type of derivative. There
are other forms of differentiation that can be defined on a manifold and they will be the discussed
in detail in this section. The starting point to thinking about differentiation on a manifold, is to
recall the familiar 3D vector calculus that Maxwell invented to describe his unification of electricity
and magnetism, as shown in Chapter 1. Firstly, we can define:

∇⃗ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(6.1)

a differential operator, which actually behaves like a vector (or co-vector, it does’t make any

difference as the ∇⃗, is defined in 3D flat Euclidean space, therefore the indicies can be raised or
lowered as required by the Minkowski metric). Derivatives have a direction and a magnitude. So
let’s recap from Chapter 3, about what goes wrong on a manifold. The derivatives ∂

∂xi , gives

components of gradients. So one can think of taking ∂
∂xi of an object on a manifold; consider a

vector field on the manifold, V⃗ . Now take the derivative:

∂V µ

∂xν
(6.2)

So these are the components, of the derivatives, of V µ. Then under a change of coordinates:

∂V µ

∂xν
=

∂

∂xν

(
V ′µ ∂x

′µ

∂y′µ

)
(6.3)

where the bracket term is the definition of how a vector transforms under coordinate trans-
formations. Using the product rule:

∂V µ

∂xν
=
∂yν′

∂yν
∂V µ′

∂y′µ
∂xµ

∂y′µ︸ ︷︷ ︸
Tα

+V ′µ ∂2xµ

∂y′µ∂y′µ
∂y′ν

∂xν︸ ︷︷ ︸
Tβ

(6.4)

Tα is the expected term and Tβ which is not a tensor, but it is on object that is symmetric
in ν′, µ′. This was already shown in Eq 3.36 and shows why the concept of simply taking partial
derivatives of a vector does not work. This might even be visible from the fact that ∂

∂xµ , is not
a geometric object, it depends on the coordinates one is working with. Therefore one has to go
back to the very beginning and the fundamental theorem of calculus:

f ′(t) = lim
δt→0

f(t+ δt)− f(t)

δt
(6.5)

to rethink about how to define a derivative to get a geometric definition of a derivative. In
the usual real analysis, the derivative at point is defined by a limiting process as shown in the
equation above. The ”t + δt” in this expression is saying, move a little bit away from a point t.
In terms of a manifold, one would need to move from one point to another in the manifold:

p1 → p2{|p2 = p1 + δp; δp << 1} p1, p2 ∈M (6.6)

109
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The problem is, that the manifold is not the same at every point. Each point on the manifold
corresponds to a different target space. Thus it is difficult to define the notion of δt. One has to
specify how to move across this distance. To do this, one has to define a way to move to neigh-
boring points that is independent of coordinates (i.e geometrically). Note that the disappearing
in partial differentiation is symmetric.

The covariant derivative is one way of getting rid of that extra term as discussed before and
provides a connection, which is a way of linking tangent spaces together. As any two tangent
spaces at different points, are, by definition, subsets at Rn, means there should exist a map link-
ing them together, which is given by the connection. Moving to a nearby point, to compare a
geometric object, is also done with the help of a connection, but this leads to concept of Lie
derivative. The Lie derivative is taken by moving along vector fields (in fact once there is a vector
field, the tangent space can also be moved along the vector field).

1.1. Forms & Exterior derivatives. This is a first look at a geometric derivative that does

not depend on a metric or a coordinate. The exterior derivative, d⃗, acting on a function, f , maps
the function onto a co-vector of 1 form:

d⃗f 7→ T ∗ (M) ∀f ∈ {C∞(M)} (6.7)

such that:

⟨d⃗f |T⃗ ⟩ = T⃗ f ∀ T⃗p ∈ T (M) at p (6.8)

This is saying that d⃗f , is a vector (as it is a linear map from Tp(M) 7→ R), acting on a point

in the tangent spaces T⃗ , to give a number T⃗ f , that’s true for every element in Tp(M), therefore

df⃗ is an independent geometric object and in the coordinate basis:

⟨d⃗f | ∂

∂xµ
⟩ = ∂f

∂xµ
(6.9)

Then d⃗ looks like the gradient operator in vector calculus. So a vector is defined as a 1 form,
the next obvious question to ask, what a p-form is. A p-form is an anti-symmetric rank p covariant
tensor. It is an element of:

Λ
(p)
Q (M) = T ∗Q (M) ∧ T ∗Q (M)⊗ ... (6.10)

where ⊗ is known as the exterior/wedge product. It is defined to an be anti-symmetric
product.

Example 19. As an example of an exterior product, lets consider the exterior product between
1 forms:

A ∧B ≡ A⊗B −B ⊗A (6.11)

Definition 17. Generally for a p form and a q form the exterior product is defined as:(
A(p) ∧B(q)

)
a1,...ap+q

≡ (p+ q)!

p!q!
A[a1,...apBap+1,...ap+q] (6.12)

An exterior product is linear, but not commutative:

A(p) ∧B(q) ≡ (−)pqB(a) ∧A(p) (6.13)

The maximum value for a p form is the dimensionality of the manifold. A rank n form (where
n = dim(M)), is proportional to the alternating symbol, ϵ (not the same as the permutation
symbol), specifically defined for this part as:

ϵa1,...an =

{
+1 odd permutations of a1, ...an

−1 even permutations of a1, ...an
(6.14)
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ϵ can be thought of as a tensor density, as in doing a coordinate transformations, one picks
up the terms of the determinant of the Jacobian matrix:

ϵµ′ν′λ′ρ′ =
∂xµ

∂y′µ
∂xρ

∂yρ
ϵµνλρ

≡ det

(
∂x

∂y

)
ϵµ′ν′λ′ρ′ (6.15)

If one has a metric defined as:

gµ′ν′ =
∂xµ

∂y′µ
∂xν

∂y′ν
gµν

= det(gµ′ν′)

=

∣∣∣∣∂x∂y
∣∣∣∣2 det(gµν) (6.16)

thus one can define:

ϵµνλρ ≡
√
(g)ϵµνλρ (6.17)

This quantity transforms as a tensor. Therefore once a metric has been introduced, we can
define a map ∗:

∗ : Λp(M) 7→ Λn−p(M) (6.18)

∗ is called the Hodge star operator. So we can go from a p form to an n − p form, by taking
the ϵ tensor and contracting it with the p form:

(∗A)a1,...an−p =
1

p!
ϵb1,...bna1,...an+p

Ab1,...bn (6.19)

Definition 18. Now one can defined an exterior derivative that maps p forms to p+1 forms:

(d⃗A)a1,...ap+1 ≡ |(p+ 1)|
p!

∂[a1Aa2,...an+1] (6.20)

This is the definition of the exterior derivative. In words it states, take the partial derivative
of p form A, and then anti-symmetrise in all possible permutations of the indicies. It also follows:

d⃗(A(p) ∧B(q)) = d⃗A(p) ∧B(q)(−)pA(p) ∧ d⃗B(q) (6.21)

One can also use ∗ to define:

δ = ∗d⃗∗ (6.22)

Which is a map from Λp to Λ′.

Example 20. As an example of how these exterior derivatives are used, consider the electro-
magnetic potential:

Aµ = (ϕ1 − A⃗) (6.23)

electro-magnetism is naturally described as the gauge theory and the gauge potential, Aµ, is
made from the vector and scalar potential. Aµ is a 1 form, the exterior derivative of it is:

(d⃗A)µν = ∂µAν − ∂νAµ

=


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (6.24)
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Which is just the stress-energy tensor of electro-magnetism. Since d⃗2, as d⃗ takes a p form and

p+1 form and the p form is limited by the dimensionality of the manifold, d⃗F = d⃗(d⃗A) = 0, gives

half of Maxwell’s equations. The other half come from d⃗F = 0. It also shows the gauge invariance
of these equations:

A→ A+ d⃗Λ (6.25)

d⃗A→ = d⃗A+ d⃗(d⃗Λ)

= d⃗A (6.26)

Example 21. Now lets consider a two form:

Bµν = 2 form (6.27)

Then the gauge transformations:

B(2) → B(2) + d⃗A(1) (6.28)

H can be defined as the field strength:

H ≡ d⃗B (6.29)

In components:

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν (6.30)

This is used in string theory and super-gravity.

This can be generalised to p forms. But the exterior derivative is just one way of taking a
geometric derivative. Another way is a Lie derivative, which will be discussed next.

1.2. Lie derivative. A Lie derivative takes a derivative along a vector field in a manifold.

Figure 31. Schematic of vector field of manifold

V µ is a vector field. To take the derivative, one has to look at the values of the field at a
local point, say p, and the compare it to the value of the field at a neighboring point. This is
not a general exterior derivative or the covariant derivative, as one is fixing the direction along
a vector field and then comparing how it changes along two neighboring points in that direction.
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The vector field V⃗ , defines a way of pushing forward the tangent space at p to p′. Move a small
amount along a curve:

xµt = xµ0 + δtV µ +O(δt2) (6.31)

This states that we start at a point p, that’s xµ0 . Move a small amount δt along this curve,
then to leading order, the coordinate transformation is:

xµt = xµ0 + δtV µ (6.32)

Therefore:

Uµt =
∂Xµ

t

∂xµ0
Uν0 (6.33)

If the coordinate transformation of U under Xµ
0 → Xµ

t , and its a contravariant coordinate
transformation. Substitute Eq 6.32 into Eq 6.33:

Uµt = Uµ0 + δtV µ0,νU
ν
0 (6.34)

This can be used to define the derivative, as now we have the framework to transport U from
p to p′.

Definition 19. We define:

(LνU)µ ≡ lim
δt→0

[U(xµt )− Ut]

δt

=
1

δt

[
Uµ(xλ + δtV λ)− (Uµ0 + δtV µ0,νU

ν)
]

=
1

δt

[
Uµ0 + δtV λUµ,ν − Uµ0 − δtV µ0,νU

ν
]

=
1

δt

[
δtV λUµ,ν − δtV µ0,νU

ν
]

= V λUλ,λU
λ (6.35)

This is the Lie derivative for a co-vector:

(Lν , ω)µ = ωµσV
σ + ωσV

σ
,µ (6.36)

For vectors LνU is also defined as a commutator:

LνU = [V,U ] (6.37)

where:

[V,U ] f ≡ v⃗(u⃗p⃗)− u⃗(v⃗, p⃗) ∀f ∈ C∗(M) (6.38)

To illustrate the significance of this Lie bracket consider Figure 32, where U and V are both
vectors fields, this is showing that, in general, going from one point to another in a curved space
is not independent of the path taken. In other words, taking a path V +U is not some as the path
U + V . The lie bracket is important as it is related to the difference between the two paths.

Claim 18. The difference between the two paths shown in Figure 32, the dotted line, is
proportional to the lie bracket:

[U, V ] (6.39)
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Proof 18. This will be shown by sticking to the underlying coordinate chart. Look at the
coordinates at point A on the diagram, to get to A:

Xµ
A = Xµ

0 + tV µ0 +
1

2
t2V µ0,νV

ν
0 (6.40)

This basically says, start at point O, then move distance, t, along V µ0 , (i.e the direction of the
vector field, V µ, at point O) and to second order one just expands about small quantity, t. This
is just a Taylor expansion. Similarly for point B:

Xµ
B = Xµ

A + sUµA +
1

2
s2Uµλ,νU

ν
A

= Xµ
0 + tV µ0 +

1

2
t2V µ0,νV

ν
0 + sUµA +

1

2
s2UµA (6.41)

Figure 32. Schematic showing that the Lie derivative is related to the path
difference along a manifold

Now we have to expand the terms UµA in a similar way but since all terms of order higher than
2 are ignored, we get:

Xµ
B = Xµ

0 + tV µ0 +
1

2
t2V µ0,νV

ν
0 + s(Uµ0 + sUµ0 ) +

1

2
s2Uµ0 (6.42)

Now use the transformation property:

Uµ0 =
∂Uµ

∂xν
Uν0 ≡ Uµ0,νU

ν
0 (6.43)

and the fact that at a point the vector fields have the same value:

Uν0 s = tV ν0 (6.44)

Therefore:

Xµ
B = Xµ

0 + tV µ0 +
1

2
t2V µ0,νV

ν
0 + s(Uµ0 + tUµ0,νV

ν
0 ) +

1

2
ts2Uµ0,νU

ν
0 (6.45)

XD can be found in the same way, by swapping U and V fields and s and t parameters:

Xµ
D = Xµ

0 + sUµ0 +
1

2
S2Uµ0,νU

ν
0 + t(V µ0 + sV µ0,νU

ν
0 ) +

1

2
t2V µ0,νV

ν
0 (6.46)
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So we see that Xµ
B = Xµ

D up to linear orders in t and s. However there is a cross term which
is not the same:

Xµ
D −Xµ

B = st
[
V µ0,νU

ν
0 − Uµ0,νV

ν
0

]
= st[U, V ]µ (6.47)

Therefore as claimed, the distance between XD and XB is proportional to the Lie bracket.

Thus, the Lie bracket gives an indication of how much the lines, or sometimes called integral
curves(as they are curves obtained by integrating a vector field), fail to close. This means that if
the Lie bracket of two vector fields vanishes, it means that the order in which a path is taken in a
manifold is not important. Also, one can uniquely go along one end and then the other, to define
a closed surface locally, which is uniquely labeled by how far one has gone along one curve and
then the other. Which means U and V can define a coordinate system on that surface. This is
one of the main uses of the Lie bracket. Note that there is a relation between the exterior product
and the Lie derivative:

⟨d⃗w⃗|u⃗, v⃗⟩ ≡ u⃗ (⟨w⃗|v⃗⟩)− v⃗ (⟨w⃗|y⃗⟩)− ⟨w⃗| [u⃗, v⃗]⟩ (6.48)

2. Killing vector

Definition 20. A killing vector is a vector field, g⃗, along which the metric is Lie invariant,
i.e the Lie derivative of the vector field is zero:

Lv g⃗ = 0 (6.49)

where g⃗ is the metric.

Example 22. As an example:

v =
∂

∂ϕ
(6.50)

is a killing vector if ϕ is some periodic coordinate. The statement is that if v is a killing vector,
the metric does not change under ∂

∂ϕ . If ϕ is a coordinate defining a circle, then the fact that the

metric is invariant under ∂
∂ϕ , is a statement of axial symmetry or symmetry of rotation around

some axis. This is the key point; the killing vector gives an insight into the symmetries that are
possessed by a metric.

3. Geometrical connection

The connection has already been discussed in Chapter 3, where it was introduced in relation
with its use in the covariant derivative. Here we take a more geometric view and look at how to
compute connection terms using exterior derivatives. So far we have seen how to take derivatives
on a manifold. It was shown that the derivative must have a directive aswell as a magnitude and
this was motivated by looking at the gradient in the usual, 3D vector calculus and then trying to
simply use the partial derivative on manifold gives a term that the second derivative that did not
transform as a tensor.

The connection provides a way of linking tangent spaces together.

Definition 21. Define:

∇e⃗b ≡ Γacbe⃗a ⊗ w⃗c (6.51)

Recall that e⃗ is the basis for the tangent space and w⃗ is the basis for the w⃗ tangent space.
This defines the action of the connection on a basis. This can be equivalently defined as:

Γabc ≡ ⟨w⃗a| ∇b︸︷︷︸
e⃗b·∇

e⃗c⟩ (6.52)
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Note that the first lower index in Γcab, i.e a in this case, is always referring to a differentiating
index.

The ∇ has the following properties:

• Commutes with contraction.
• Liebnizian.
• Reduces to d⃗ when acting on a function.

For a general vector:

∇V⃗ = ∇ (V⃗ ae⃗a)︸ ︷︷ ︸
components

(6.53)

V expressed in a particular basis, e⃗a on the tangent space. From the property of commutativity
and Leibnizian:

∇V = (∇V a)e⃗a + V a∇e⃗a
= d⃗V ae⃗a + V aΓbcae⃗bw⃗

c (6.54)

By simply re-labeling the indices:

T1 ≡ ∇V = (V a,b + V cΓabc)e⃗a ⊗ w⃗b (6.55)

T1 is the usual definition of the covariant derivative. But T1 = ∇bV
a. This is known as the

abstract index rotation that is almost always used. However in general one has to include the
basis terms at the end. In general relativity, we use a torsion-free metric connection:

∇g⃗ = 0 (6.56)

Torsion is defined as:

T⃗ (U⃗ , V⃗ ) ≡ ∇µV⃗ −∇νU⃗ −
[
U⃗ , V⃗

]
(6.57)

it is a tensor as the difference of curvature of any 2 metrics is a tensor. This is very nearly
the anti-symmetric part of the connection:

Γabc = Γabc − Γacb − Cabc (6.58)

where:

Cabc ≡ ⟨w⃗a| [e⃗a, e⃗c]⟩ (6.59)

this is a correction term and it allows for the fact that there can be vector fields that don’t
commute. These C ′s are called the structure constants of the basis {e⃗a}. If the structure constants
are zero, the connection reduces to the Christoffel symbol, as shown in Eq 2.29.

Definition 22. One can also define the connection 1 form as:

θ⃗ab = Γacbw⃗
c (6.60)

Taking the connection components and contracting the differentiating index, from Eq 6.52:

∇e⃗b ≡ θ⃗ba ⊗ e⃗b (6.61)

This defines the θ’s.

Claim 19.

d⃗gab = θ⃗ab + θ⃗ba (6.62)

Here θ⃗ab is anti-symmetric in ortho-normal basis.
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Proof 19. Start with:

d⃗(gab) = d⃗(g(e⃗a, e⃗b)) (6.63)

gab are the components of the metric in the basis, e⃗a. Which means we take 2 basis vectors,
e⃗a and e⃗b and contract them using the metric tensor:

d⃗(gab) = ∇g(e⃗a, e⃗b) (6.64)

Because d⃗ = ∇ when acting on a function. Since the ∇ commutes with contraction and we
have a metric connection(i.e Leibniz):

d(gab) = g⃗(∇e⃗a, e⃗b) + g⃗(e⃗a,∇e⃗b)
= θ⃗cag⃗(e⃗c, e⃗b) + θ⃗cb g⃗(e⃗b, e⃗c) (6.65)

So the covariant derivative of each basis is given in terms of the connection 1 forms:

d⃗(gab) = gcbθ⃗
c
a + gacθ⃗

c
b

= θ⃗ba + θ⃗ab (6.66)

Now we want to get an expression, of deriving these connection 1 forms. To do so, first lets
re-arrange the wedge product:

θ⃗ac ∧ w⃗c = Γabcw⃗
b ∧ w⃗c (6.67)

w⃗ is anti-symmetric in b and c:

θ⃗ac ∧ w⃗c =
1

2
(Γabc − Γacb)w⃗

b ∧ w⃗c (6.68)

But the anti-symmetric part of the connection is the torsion plus the structure constant:

θ⃗ac ∧ w⃗c =
1

2
(T abc + Cabc)w⃗

b ∧ w⃗c (6.69)

So the first part is geometric (with the torsion):

θ⃗ac ∧ w⃗c ≡ T⃗ a − 1

2
⟨w⃗a| [e⃗b, e⃗c]⟩w⃗b ∧ w⃗c T⃗ a ≡ 1

2
T abcw⃗

b ∧ w⃗c (6.70)

But from Eq 6.48:

⟨w⃗a| [e⃗b, e⃗c]⟩ = −⟨d⃗w⃗a|e⃗be⃗c⟩ − e⃗b(δ
a
c ) + e⃗c(δ

a
b ) = −⟨d⃗w⃗a|e⃗be⃗c⟩ (6.71)

Combining Eq 6.70 and 6.71:

θ⃗ac ∧ w⃗c = T⃗ a − d⃗w⃗a (6.72)

This is known as Cartan’s first equation.

4. Curvature

We define the curvature of the connection essentially as the commutator of derivatives, this is
directly analogous to gauge theory, in which a commutator of gauge invariant derivatives is used
to get the curvature or in this case the curvature of gauge connections or physical field strengths.

The Riemann curvature is defined as a map from three copies of the tangent space, into a copy
of the tangent space. This is done by taking a commutator of covariant derivatives and then sub-
tracting a Lie bracket part, which takes into account any inherent anti-symmetry that is already
present because u and v don’t commute. In components:

Rabcd = Γabd,c − Γabc,d + ΓaceΓ
e
db − ΓadeΓ

e
cb − CecdΓ

a
eb (6.73)
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It is very nearly the familiar expression in terms of the Christoffel symbols. The only extra
bit is the last term in terms of the structure constants. Which is just saying that we are in a
non-coordinate basis (in some awkward basis), and quite often this is the case and we may want
to use an ortho-normal basis. The components of the Riemann curvature have to take into account
the fact that the basis have this non-trivial behavior.

Cartan’s second equation is a way of expressing the Riemann curvature using exterior deriva-
tives and the connection 1 forms.

Definition 23. First of all, define a curvature 2 form:

R⃗ab =
1

2
Rabcdw⃗

c × w⃗d (6.74)

and then the curvature is given as:

R⃗ab = d⃗θ⃗ab + θ⃗ac ∧ θ⃗cb (6.75)

This is Cartan’s second equation.

Physically, curvature tells us about tidal forces. Suppose there is a vector field, T , which is
geodesic:

∇TT = 0 (6.76)

This means there are a set of inertial observes on geodesics:

Figure 33. Geodesic of a vector field T⃗

The geodesics are labeled by parameter S. Suppose we go a small distance forward on the
geodesics, and the geodesic is still labeled by S. In this way, we are setting up a local coordinate
system. Let N be ∂

∂S connecting the geodesics. By construction the Lie bracket of T and N
vanishes (as the two curves are closed). Thus the Riemann curvature is:

Rµνλρ = −(Γµνλ,ρ − Γµρν,λ + ΓµρλΓ
γ
νλ − ΓµγλΓ

γ
ρν) (6.77)

And if the curve is parametrised by time one gets the usual geodesic equations, as shown as
Eq 3.149.
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5. Using the Cartan formalism

To see how the Cartan structure equations are used, we will apply the formalism to a spheri-
cally symmetric static situation. The static part means that there is a killing vector:

Static solution ⇒ Killing vector =
∂

∂t
(6.78)

There is also a t→ −t symmetry. Spherically symmetric means that there is an SO(3) algebra
of killing vectors, in other words:

[ξi, ξj ] = ϵijkξk (6.79)

This says that there are surfaces in the geometry, which are invariant, and have a dimension
≤ 3. In this case we will be looking for two coordinates θ, ϕ on which the metric won’t change.
The metric being used is:

ds2 = A(r)2dt2 −B(r)2dr2 − C(r)2dΩ2
2 (6.80)

where the usual solid angle is defined as:

dΩ2
2 ≡ dθ2 + sin2 θdϕ2 (6.81)

This metric is more general than is required because it allows for patterns to be seen in the
solutions. Now we want to apply Cartan’s equations, which means we have to go through the
following steps.

• Identify an ortho-normal basis, so that the connection 1 forms are anti-symmetric. Since
the metric is diagonal, the basis vectors are obvious:

w⃗t̂ ≡ Adt

w⃗θ̂ ≡ Cdθ⃗

w⃗r̂ ≡ Bdr⃗

w⃗ϕ̂ ≡ C sin θdϕ⃗ (6.82)

All we have to do is take the basic coordinate basis for the co-vector space, which is

dt, dr⃗, dθ⃗, dϕ⃗ and then multiply by an appropriate weighting factor, such that the metric
is now simply the:

ds2 = w⃗t̂ + w⃗r̂ + w⃗θ̂ + w⃗ϕ̂ (6.83)

the indices are hatted to emphasise the fact that we are referring to an co-tangent
ortho-normal basis.

• Differentiate:

d⃗w⃗t = A′(dr⃗ ∧ dt) +Ad⃗2t (6.84)

but recall that d2 = 0, therefore:

dω⃗t = A′d⃗r ∧ d⃗t (6.85)

But this needs to be expressed in terms of the ortho-normal basis:

dw⃗t̂ = − A′

AB
w⃗t̂ ∧ w⃗r̂ (6.86)

Where the minus sign comes from swapping r and t. Similarly:

d⃗w⃗r̂ = B′ d⃗r ∧ d⃗r︸ ︷︷ ︸
0

+B d2r︸︷︷︸
0

≡= 0 (6.87)
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d⃗w⃗θ̂ = C ′dθ⃗ × dr⃗ + Cd⃗2θ

= − C ′

CB
w⃗θ̂ ∧ w⃗r̂ (6.88)

d⃗w⃗ϕ̂ = C ′ sin θdr⃗ ∧ dϕ+ C cos θdθ ∧ dϕ+ C sin θd⃗2ϕ

= C ′ sin θdr ∧ dϕ+ C cos θdθ ∧ dϕ

= − C ′

CB
w⃗ϕ̂ ∧ w⃗r̂ − cot θ

C
w⃗ϕ̂ ∧ w⃗θ̂ (6.89)

So now we have to take the derivative of the basis, the reason for doing that is
because Cartan’s first equation states that the connection 1 forms are related to exterior
derivatives of the basis vectors.

• Now one can simply read off the connection: from Cartan’s first equation:

d⃗w⃗a + θ⃗ab ∧ w⃗b = 0 (6.90)

So for the t component:

d⃗w⃗t̂ = −θ⃗t̂
b̂
∧ w⃗b̂ (6.91)

Compare this to expression for dw⃗t just derived, Eq 6.86;

d⃗w⃗t̂ = − A′

AB
w⃗t̂ ∧ w⃗r̂

= −θ⃗t̂
b̂
∧ w⃗b̂ (6.92)

Therefore:

θ⃗t̂r̂ ≡
A′

AB
w⃗t̂ (6.93)

Note that since are no off diagonal elements, this calculation is really straightforward.
In fact most physically interesting systems are actually similar to this and do not diverge
too much in there complexity. Applying the same method for the remaining components:

d⃗w⃗θ̂ = −θ⃗θ̂
b̂
∧ w⃗b̂

= − C ′

CB
w⃗θ̂ ∧ w⃗r̂

⇒ θθ̂r̂ =
C ′

CB
w⃗θ̂ (6.94)

d⃗w⃗ϕ̂ = θ⃗ϕb̂ ∧ w⃗
b̂

= − C ′

CB
w⃗ϕ̂ ∧ w⃗r̂ − cot θ

C
w⃗ϕ̂ ∧ w⃗θ̂ (6.95)

In this case the dummy index b̂ will take two values, r and θ:

θ⃗ϕ̂r̂ =
C ′

CB
w⃗ϕ̂

θ⃗ϕ̂
θ̂

=
cot θ

C
w⃗ϕ̂ (6.96)

All others are zero.
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• Now apply Cartan’s second equation, Eq 6.75. We are looking for the curvature 2 forms
and for Einstein metric connection, these are anti-symmetric on a and b and running
over 4 values, one has 6 independent equations. First let’s do the equations for t̂ and r̂:

Rt̂r̂ = d⃗θt̂r̂ + θt̂â ∧ θâr̂ (6.97)

This is 0 ∀â as θt̂r̂ is the only non-zero component of the first part and θr̂r̂ on the
second part is zero. Therefore Eq 6.97 simplifies to:

Rt̂r̂ = d⃗θ⃗t̂r̂

= d⃗

(
A′

AB
w⃗t̂
)

= d⃗

(
A′

B
dt

)
=

(
A′

B

)′

dr ∧ dt

=

(
A′′

B
− A′B′

B2

)
dr ∧ dt

=

(
A′′

B
− A′B′

B2

)
w⃗r̂

B
∧ w⃗t̂

A

=
1

B2

(
A′′

A
− A′B′

AB

)
w⃗r̂ ∧ w⃗t̂ (6.98)

Similarly for the other components:

Rθ̂r̂ = d⃗θθ̂r̂ + θθ̂â ∧ θâr̂
= d⃗θθ̂r̂

= d⃗

(
C ′

CB

)
w⃗θ̂

= d⃗

((
C ′

CB

)
Cdθ

)
=

(
C ′

B

)′

dr ∧ dθ

=
1

B2

(
C ′′

C
− C ′B′

CB

)
w⃗r̂ ∧ w⃗θ̂ (6.99)

Note that the ϕ equation actually has two equations coming from the θϕ̂ and θϕ̂
θ̂

terms:
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Rϕ̂r̂ = d⃗θ
ˆphi
r̂ + θϕ̂â ∧ θâr̂

= d⃗θϕ̂r̂ + θϕ̂
θ̂
∧ θθ̂r̂

= d⃗

(
C ′

CB
w⃗ϕ̂
)
+

cot θ

C
C sin θdϕ ∧ C ′

CB
Cdθ

= d⃗

(
C ′

CB
w⃗ϕ̂
)
+ cos θdϕ ∧ C ′

B
dθ

= d⃗

(
C ′

B
sin θdϕ

)
+ cos θdϕ ∧ C ′

B
dθ

=

(
C ′

B

)′

sin θdr ∧ dϕ+
C ′

B
cos θdϕ ∧ dϕ+ C cot θ sin θdϕ ∧ C ′

CB
Cdθ

=

(
C ′

B

)′

sin θdr ∧ dϕ+
C ′

B
cos θdθ ∧ dϕ+ cos θ

C ′

B
dϕ ∧ dθ (6.100)

But from the anti-symmetry of the wedge product:

Rϕ̂r̂ =

(
C ′

B′

)′

sin θdr ∧ dϕ+
C ′

B
cos θdθ ∧ dϕ− cos θ

C ′

B
dθ ∧ dϕ

=

(
C ′

B

)′

sin θdr ∧ dϕ

=
1

B2

(
C ′′

C
− C ′B′

CB

)
w⃗r̂ ∧ w⃗ϕ̂ (6.101)

Similarly the other components are:

Rt̂
θ̂

= θt̂â ∧ θâθ̂
= θt̂r̂ ∧ θr̂θ̂ (6.102)

Now we need θr̂
θ̂
and this is found by:

ηr̂r̂θ
r̂
θ̂
= −θr̂θ̂ = θθ̂r̂ (6.103)

and

ηθ̂θ̂θθ̂r̂ = −θθ̂r̂ (6.104)

Therefore:

θr̂
θ̂
= −θθ̂r̂ (6.105)

Substitute Eq 6.105 into Eq 6.102:

Rt̂
θ̂
= − A′C ′

AB2C
w⃗t̂ ∧ w⃗θ̂ (6.106)

and for ϕ̂:

Rt̂
ϕ̂
= − A′C ′

AB2C
w⃗t̂ ∧ w⃗ϕ̂ (6.107)

The final one is:
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Rϕ̂
θ̂

= dθϕ̂
θ̂
+ θϕ̂â ∧ θâ

θ̂

= d⃗(cos θdϕ) +
C ′

CB
w⃗ϕ ∧

(
− C ′

CB
w⃗θ̂
)

= − sin θdθ ∧ dϕ− C ′2

C2B2
w⃗ϕ̂ ∧ w⃗θ̂ (6.108)

putting all this together:

Rϕ̂
θ̂
=

1

C2

(
1− C ′2

B2

)
w⃗ϕ̂ ∧ w⃗θ̂ (6.109)

• Last part is to find the Riemann tensor from this:

Rab =
1

2
Rabcdw⃗

c ∧ w⃗d (6.110)

Reading of the components from the previous equations:

Rt̂
r̂t̂r̂

= − 1

B2

(
A′′

A
− A′B′

AB

)
(6.111)

Rθ̂
r̂θ̂r̂

= − 1

B2

(
C ′′

C
− C ′B′

CB

)
≡ Rϕ̂

r̂ϕ̂r̂

Rt̂
θ̂t̂θ̂

= − A′C ′

AB2C
≡ Rt̂

ϕ̂t̂ϕ̂

Rϕ̂
θ̂ϕ̂θ̂

=
1

C2

(
1− C ′2

B2

)
(6.112)

These are the components of the Riemann tensor in the ortho-normal basis. So the
Riemann tensor, R, would be given contracting with this ortho-normal basis:

R = Râ
b̂ĉd̂
e⃗âw⃗

b̂w⃗ĉw⃗d̂ (6.113)

We usually want Riemann in a coordinate basis, for example:

Rtrtr = Rt̂
r̂t̂r̂
B2 (6.114)

where B2 comes from the two r indicies, where the indices without the hat are
coordinate bases (not ortho-normal basis). For the Einstein equations one can simply
read of the Ricci tensor by keeping one index upstairs and one index downstairs, as then
the weighting factors cancel out:

Rtt = Rt̂
t̂
=

1

B2

[
A′′

A
− A′B′

AB
+

2A′C ′

AC

]
Rθθ =

1

B2

[
C ′′

C
− C ′B′

CB
+
A′C ′

AC
+
C ′2

C2

]
− 1

C2
= Rϕϕ

Rrr =
1

B2

[
A′′

A
+

2C ′′

C
− B′

B

(
A′

A
+

2C ′

C

)]
(6.115)

Now these can be used to be build an Einstein tensor:
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Gtt =
1

C2
− 1

B2

(
2C ′′

C
− 2C ′B′

CB
+
C ′2

C2

)
Grr =

1

C2
− 1

B2

(
2A′C ′

AC
+
C ′2

C2

)
Gθθ = − 1

B2

(
A′′

A
+
C ′′

C
+
A′C ′

AC
− B′

B

(
A′

A
+
C ′

C

))
= Gϕϕ (6.116)

This example shows how to use the Carton formalism, as an alternative to the way of com-
puting the Christoffel symbols and then computing the Einstein tensor. Both methods have their
positive and negative aspects, and it is easier to use one or the other depending on the metric. An
important concept in all of theoretical physics, is that of a gauge. In general relativity a gauge
just means a change of coordinates. In this example, there are a few choices of which gauge to
choose:

• Set B ≡ 1: In this case r equals proper radial distance.
• Set A ≡ 1

B . This is useful in specific cases.

• Set C ≡ R: This is known as the area gauge, because the area of a 2 sphere is 4πr2. In
this case R is not the proper distance, it is simply giving the area of the 2 sphere.

The idea of a gauge is that choosing a gauge should not affect the equations of motion and all
three of the above satisfy this condition. As an example let’s choose the area gauge: which gives
the Einstein equations for time:

1

r2
+

2B′B−3

r
− B−2

r2
= 8πGT (6.117)

This can be written as:

(rB−2)′ = 1− 8πGT 0
0 r

2 (6.118)

B−2 = 1− 2GM(r)

r
(6.119)

This is the static spherically symmetry solution. Where:

M(r) ≡
∫

4πr2T 0
0 dr (6.120)

Recall that T 0
0 is like an energy density, which means this equation is the same as the intuitive

notion of the m mass inside the sphere. Now lets look at the rr equation which also does not
contain a second derivative:

1

r2
−
(
1− 2GM(r)

r

)(
2A′

Ar
+

1

r2

)
= −8πGPr (6.121)

where Pr is the radial pressure. This can be re-arranged as:

(A2)′

A2
=

2GM(r) + 8πGr2Pr
r(r − 2GM(r))

(6.122)

At present this cannot be solves one needs an equation of state for Pr. Instead one can look
at the conservation of energy-momentum:

∇aT
ab = 0 (6.123)

Now we use the ortho-normal basis and try to compute the connection in the ortho-normal
basis:
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Γt̂
t̂r̂

= Γr̂
t̂t̂
=

A′

AB

Γθ̂
θ̂r̂

=
C ′

CB
= −Γr̂

θ̂θ̂
(6.124)

The r̂ component of Eq 6.123:

∇aT
ar = ∂r̂P + Γââr̂Pr + Γr̂

âb̂
T âb̂

=
1

B
P ′
r +

(
A′

AB
+

2

rB

)
Pr +

(
A′

AB
ρ− 2

rB

)
Pr

=
1

B

(
P ′
r +

A′

A
(Pr + ρ)

)
(6.125)

Thus the conservation of energy and momentum gives an equation that links Pr and ρ.





CHAPTER 7

Space-time structures

1. Penrose diagrams

We have already seen the Kruskal coordinates in Chapter 5, these will now be used to describe
the causal structure of space-time via the tool of Penrose diagrams. The space-time used will be
the Schwarzschild solution to Einstein equations. The Schwarzschild solution has so far only been
used without a cosmological constant. If we add a cosmological constant, Λgab, then in Eq 6.118,
the T 0

0 is equal to a constant and therefore this equation can be inegrated easily:

rB−2 = 1−Ar2 (7.1)

which implies:

B−2 = 1− 2GM

r︸ ︷︷ ︸
Tα

− Λr2

3︸︷︷︸
Tβ

= A2 (7.2)

If Λ > 0, the model universe is called the de-Sitter universe. Tα and Tβ are both negative,
therefore:

A2 → 0 as

{
r ≈ 2GM

r ≈
√

3
Λ

(7.3)

if M is sufficiently small. We already knew that when gtt → 0, one has a coordinate singular-
ity, in the Scwarschild space-time. By a change of coordinate system, into the Kruskal coordinates,
we have shown that there is a boundary in space-time between events that an asymptotic observer
can see and those that they can’t see. Therefore, if gtt = 0, it is associated with a horizon.

In this case r ≈ 2GM , will be an event horizon of a black hole and r =
√

3
Λ , is called a cosmological

horizon, because in de-Sitter space, the space is expanding so rapidly that any individual observer
see’s that there is a boundary between events in the universe that they can monitor and those
they cannot. The event horizon are clearly visible in this coordinate systems, but de-Sitter space
actually has several coordinates systems that are commonly used to describe the space-time. If
M = 0,Λ = 3:

ds2 = (1− r2)dt2 − (1− r2)−1dr2 − r2dΩ2
2 (7.4)

This is known as the static patch as the metric is time-dependent. Now one change coordinates:

ds2 = dτ2 − cosh2 τdΩ2
3 (7.5)

In these coordinates the metric looks like a Lorentzian sphere (hyperboloid, shown by the
cosh term). This called the global patch, as they cover the whole of the de-Sitter space. In the
static patch, as r → 1, there is a coordinate singularity. We have seen that this is removed in the
Kruskal coordinates. Therefore the static patch does not cover the whole of de-Sitter space.

Another possible coordinate system used is:

127
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ds2 = dT 2 − e2T dx⃗2︸︷︷︸
R3

(7.6)

The metric represents a flat universe, with exponential inflation. This is typically used in
cosmology. If Λ < 0, the space is called anti de-Sitter (adS) space. The metric is now:

ds2 = A2dt2 − dr2

A2
− r2dΩ2

2 (7.7)

where:

A ≡ 1− 2GM

r
+ k2r2 k2 ≡ −Λ

3
(7.8)

the k has been put in to emphasise that the last term is now positive. This has only one
horizon, which is at ≈ 2GM . Black holes in adS are used very frequently in applications of string
theory because of the famous adS-CFT correspondence (which I don’t know anything about yet).
Note that the 1 in Eq 7.8, comes from the fact that we were dealing with a 2 sphere. If one changes
the dΩ2

2 to some general 2D space:

dΩ2
2 → dx2κ (7.9)

where:

κ =


1 → S2 Spherical, closed

0 → R2 flat

−1 → H2 Hyperboloid

(7.10)

Then the 1 in the previous equation, becomes a κ, therefore κ = 1 for Λ < 0 or de-Sitter
otherwise, the gtt would be negative and that’s not consistent with the metric signature. However
in adS, κ can take on all three values 1,−1, 0 as the k2r2 term is positive (hence can compensate
for the other two negative terms). Therefore in adS one has spherical spherical planar (flat) and
hyperbolic black holes. Therefore black holes only have to be spherical in vacuum equations with
positive Λ.

1.1. Causal structure of space-time. The Schwarzschild metric is:

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ2
2 (7.11)

Here we follow the Kruskal coordinates using slightly different notation than previously done.
To remove the coordinate singularities, Kruskal coordinates are used:

r∗ =

∫
dr

1− 2GM
r

⇒ dr∗ =
dr

1− 2GM
r

= r + ln(r − 2GM) (7.12)

The idea here is that including a factor of r∗, we get a single factor in front of the t and r
components. This means that propagation of mass-less particles occurs along lines of dt = ±dr.
So the first step is to move to coordinates in which the characteristic curves are just straight lines.
The coordinate system is still singular, but it hints at how to go beyond the singularity. Define:

U ≡ −2GMe−
(t−r∗)
4GM

V ≡ 2GMe
t+r∗
4GM

dUdV ≡ UV (dt2 − dr∗2)− 1

4(GM)2
(7.13)

This also gives:
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UV = −(2GM)2e
r∗

2GM (7.14)

The dependence of the time coordinates in Eq 7.14 factors out:

e
r∗

2GM = e
r

2GM
(r − 2GM)

2GM
(7.15)

therefore Eq 7.14 as r → 2GM . The metric in these new coordinates is:

ds2 =
4

2GMr
dUdV e−

r
2GM − r2(U, V )dΩ2

2 (7.16)

Notice that r is now written as a factor of U, V . Now as r → 2GM :

ds2 = C(constant)dUdV −D(constant)dΩ2
2 (7.17)

Therefore the metric is perfectly regular. Since r = 2GM is an horizon, lets try to identify
where it is in these coordinates. When r is a constant, then UV has to be constant. Similarly
when t is a constant U

V is a constant. At r = 2GM , the r∗ becomes negatively infinite, UV → 0.
Now to see what happens at r = 0 in these coordinates:

r = 0 ⇒ UV = (2GM)2 (7.18)

Figure 34. Black hole horizon shown by red line

This is what the maximally extended space-time looks like, r = 0 is a real singularity (i.e it
cannot be removed by a coordinate transformation). The U and V coordinates run between −∞
and +∞.

The penrose diagram shrinks this into a single smaller picture, which is component (i.e can be fully
drawn, of course nobody can draw an axis from −∞ and +∞). To do this, define new coordinates:

p = arctan

(
V

2GM

)
q = arctan

(
U

2GM

)
(7.19)

This will bring the limits down from −∞ to +∞ to [−π
2 ,

π
2 ]. The coordinates take on values

are:
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V = 0 ⇒ p = 0

V = 2GM ⇒ p =
π

4
(7.20)

Note that combining the two definitions we get an identity:

tan (p+ q) =
tan p+ tan q

1− tan p tan q
=

U + V

(2GM)2 − UV
(7.21)

when UV → 2GM2, which is the singularity; therefore:

tan (p+ q) → ∞ (7.22)

i.e p+ q = π
2 .

Figure 35. Penrose diagram for Schwarzschild solution

This sketch represents the causal structure of the Schwarzschild solution. These coordinates
identify the horizon as a null surface, which we already know it is because it is a boundary between
what can be seen and what cannot. Imagine a photon that always moves at r = 2GM always
trying to move out but being pulled back in by gravity at the same rate. Due to time-symmetry,
one also gets a surface under time reflection. In the maximally extended Schwarzschild space-time,
one gets both of these surfaces corresponding to a black hole and a white hole.

1.2. Penrose diagram of Minkowski space-time. The Minkowski metric in spherical
coordinates is the usual:

ds2 = dt2 − dr2 − r2dΩ2
2 (7.23)

In flat space there are no singularities in the metric and one can simply define:

u ≡ t− r

v ≡ t+ r (7.24)

If r is positive (which it is as r is a radial coordinate), then:

U − V > 0 (7.25)
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The space-time is diagram is shown below:

Figure 36. Space-time diagram for the Minkowski metric, showing that the left
side of the black line does not exist.

Now using the the same definition for p, q in Eq 7.19, we get the causal structure:

Figure 37. Causal structure of Minkowski metric

r = 0 is not a horizon or singularity, as a light ray going through r = 0. will simply come
out the other side with same positive value for r, so in the diagram, it will appear to simply
bounce of the r = 0 point. Points i−, i+, i0 and lines I +,I − are boundaries. Any observer has
to eventually end up at i+ and it is called a future time like infinity. Any observer must have
come from i−, and this is called past time like infinity. The only way to get to i0 is to go along
a line that is more that 45◦, to the vertical, i.e a space-like line therefore i0 is called a space-like
infinity.

• I + is called a ”scri plus” and the only way to get there is to take a null like trajectory
in the future. So its called a future null infinity.
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• I − is called a ”scri minus” and is the past null infinity.

Notice that the R.H.S of both Figure 37 and 35 is the same, therefore the causal structure of
both space-times is the same (even though the metric is not), however the Schwarzschild metric
does asymptotically approach the Minkowski space-time). The L.H.S we see a different picture.
The r = 0 has been stretched out and instead of r = 0, there is an additional null surface, which
is an event horizon.

Example 23. In Schwarzschild de-Sitter space the Penrose diagram looks like:

Figure 38. Penrose diagram for Schwarzschild de-Sitter space

Example 24. In Schwarzschild adS space the Penrose diagram looks like:

Figure 39. Penrose diagram for Schwarzschild adS space

2. Euclidean ”black holes”?

It is a mathematically interesting question to ask what happens when we take the Schwarschild
metric and make it Euclidean:
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ds2 =

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2 (7.26)

The metric also has R = 0 (Ricci scalar). What happens as r → 2GM ; in the Minkowski like
metric, r → 2GM is not a singularity, it is an event horizon. So one is lead to ask, weather there
is a way to make this metric non-singular aswell at r = 2GM . Ignoring the solid angle term (as
it simply adds a numerical factor); we want to see what happens to the term:

ds22 ≡
(
r − 2GM

r
dt2 +

r

r − 2GM
dr2
)

(7.27)

Define:

ρ2 ≡ λ(r − 2GM) (7.28)

Then:

2ρdρ = λdr (7.29)

and the new metric is:

ds22 =
ρ2

ρ2 + 2GMλ
dt2 +

(
ρ2 + 2GMλ

ρ2

)
4ρ2

λ2
dρ2 (7.30)

As r → 2GM , ρ→ 0 (i.e 2GM λ >> ρ) :

ds2 ≈ p2

2mλ
dt2 +

8GM

λ
dρ2 (7.31)

Choose λ = 8GM , then define new coordinates:

θ ≡ t

4GM
(7.32)

therefore:

ds22 = ρ2dθ2 + dρ2 (7.33)

i.e ρ→ 0 ∈ R2

This is near the origin of the plane in plane polar coordinates, if θ has periodicity 2π. Therefore
the Euclidean metric can be made regular at r = 2GM , provided the θ coordinate is periodic in
2π. However, from the definition of θ in Eq 7.32, this implies that:

period of t = 8πGM (7.34)

In thermal field theory periodic Euclidean time corresponds to a finite temperature:

T ≈ 1

β

~c3

8πGmkB
(7.35)

where the constants have been put in to get the correct units. β represents the periodicity
of Euclidean time. So it seems like the black hole has some finite temperature. Also note that
larger mass would decrease the temperature and hence eventually the black hole would decrease
its temperature by evaporating. This is of course what Hawking has already shown; that Black
holes will radiate via Hawking radiation.





CHAPTER 8

Gravitational field theory

The most successful theory in physics is the Standard model of particle physics which is a
Quantum field theory. One of the major problems in physics (if not the major problem) is that of
finding a quantum filed theory for gravity. However to do that, the first step is to describe general
relativity as a classical field theory.

The natural place to start is to look for an action that describes gravity. This action is known as
the Einstein-Hilbert action (sometimes just known as the Einstein action). The idea is to find the
corresponding Lagrangian, which, when varied w.r.t to the fields will provide the Einstein field
equations of motion. This means one needs to use the scalar gravitational field.

Since the action is an integral over the Lagrangian and the Lagrangian has fields in it which
are defined over a manifold, one needs to understand the concept of integrating over a manifold
aswell.

1. Integrating over a manifold

In field theory, one usually has a Lagrangian density, L. In flat space, this is integrated over
to give the full Lagrangian, L: ∫

d3xL = L (8.1)

One cannot simply take this expression and lift it to an arbitrary manifold. This is because
changing coordinates in a manifold gives a factor of a Jacobian matrix:

d4Y → det

(
∂y

∂x

)
d4x (8.2)

This is not a tensor, its more like a tensor density (as seen for the ϵ symbol), therefore
multiplying it by

√
g, gives a quantity that transforms as a tensor. Thinking about this in the

context of the Lagrangian density, we are integrating over a volume element and the volume should
have some information about the underlying the metric, because a metric is what gives information
about distance on a manifold. In fact talking about a volume is meaningless without a metric to
define distances on a manifold. Thus it is natural to take:√

|g|dx (8.3)

under a coordinate transformation,
√
g, get a factor of ∂x∂y , then under a coordinate transfor-

mation one gets: √
|g|d4x→

√
|g(y)|d4y (8.4)

Thus we have to write down a co-variant volume element, which means we need to how the
right information about the metric, which is why a

√
g is inserted. Now we need to vary the action

w.r.t the physical observables. The metric represents the distances, so the obvious choice is to
vary the action w.r.t to the metric, so we need to know how the determinant of the metric varies.
To do this, we need to use the identity:

det(M) = exp(tr(log(M))) (8.5)
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where M is an arbitrary matrix. Varying this:

δ(det(M)) = δ(tr(log(m)))det(M) = tr(M−1δM)det(M) (8.6)

Using this identity for g:

δ
√
−g =

1

2

1√
−g

δ(−g)

=
1

2

1√
−g

(−g)gabδgab

=
1

2

√
−ggabδgab

= −1

2

√
−ggabδgab (8.7)

Another result from this identity is:

∂a
√
−g =

1

2

√
−ggcdgcd,a

= −
√
−gΓdad (8.8)

2. Einstein action

Consider a mass less scalar field:

Lϕ =
1

2
(∂ϕ)2 (8.9)

Therefore the action is:

Sϕ =

∫
d4x

√
−g 1

2
(∂ϕ)2

=
1

2

∫
d4x

√
−g ∂aϕ∂bϕgab︸ ︷︷ ︸

(∂ϕ)2

(8.10)

In general, the action is varied by:

δSϕ =

∫
d4x

√
−g
[
δS

δϕ
δϕ+

δS

δgab
δgab

]
(8.11)

Computing the terms:

δSϕ =
1

2
δ

∫
dx

√
−g(∂ϕ)2

=
1

2
δ

∫
d4x

√
−g∂aϕ∂bϕgab

=
1

2

∫
d4xδ(

√
−g∂aϕ∂bϕgab)

=
1

2

∫
d4x(δ

√
−g)∂aϕ∂bϕgab + (

√
−g)δ(∂aϕ∂bϕ)gab + (

√
−g)∂aϕ∂bϕ(δgab)

=

∫
d4x

√
−g
[
∂aϕ∂bδϕg

ab +
1

2
∂aϕ∂bϕδg

ab − 1

4
gab(∂ϕ)

2δgab
]

(8.12)

To get Eq 8.12 into the form of Eq 8.11, we have to integrate by parts. The first term is:
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δS

δϕ
= − 1√

−g
[
∂b
√
−ggab∂aϕ

]
= −∂b∇bϕ− 1√

−g
(∂b

√
−g)∇bϕ (8.13)

But ∂b
√
−g =

√
−g Γdbd, therefore:

δS

δϕ
= −∂b∇bϕ− Γdbd∇bϕ

= −�ϕ (8.14)

where:

� ≡ ∂b∇b + Γdbd∇b (8.15)

This is the wave equation in curved space-time. The only difference is that the wave operator
is the curved space wave operator i.e it has a curvature term, Γ, in it. This is the scalar equation
of motion and it is as expected. The variation of the scalar field action w.r.t the metric:

δSϕ
δgab

=
1

2
(∂aϕ∂bϕ− 1

2
(∂ϕ)2gab) (8.16)

This is like the energy momentum tensor of free space:

δSϕ
∂gab

=
1

2
Tϕab (8.17)

If one can construct a gravitational action such that when it is varied w.r.t the gravitational
field, i.e the metric, g, then we get the Einstein tensor. If one varies the matter Lagrangian, w.r.t,
g, we expect to get the energy momentum tensor.

Now we want to construct a gravitational Lagrangian. The obvious thing to use in the Lagrangian
that requires a scalar is the Ricci scalar. A Lagrangian will, in general have a kinetic energy
term and a potential energy term. The kinetic energy term will involve first order derivatives of
the quantity being varied. However we have already shown that to first order all derivatives of
curvature can be set to zero, thus it is good that R already has first order derivatives of g, thus
differentiating again means only second order derivatives of the metric are present, which cannot
be set to zero by coordinate transformation.

The first ingredient required is the variation of the Ricci scalar:

δR = δ(Rabg
ab) (8.18)

This is just the trace of the Ricci tensor:

δR = δRabg
ab︸ ︷︷ ︸

T1

+Rabδg
ab︸ ︷︷ ︸

T2

(8.19)

T2 is the first part of the Einstein tensor. In the integral, one also has a
√
−g (which came

from demanding that the coordinate transformations did not change the integral) which gives
−1

2Rgab. Therefore the T2 with the integral gives the Einstein tensor. Any contribution from T1
will change the structure of the Einstein equations.

Lemma 1. Variation of Rab given by Palatini’s Lemma:

δRab = ∇cδT
c
ab −∇bδT

c
ca (8.20)
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So the variation in Rab is given by the covariant derivative of the discrepancy in the connection,
which comes when one goes from gab → gab + δgab. The difference of two connections is a tensor,
therefore Eq 8.20 is actually a tensor.

There is an easy way to motivate this lemma using normal coordinates. Normal coordinates
are ones which have no curvature locally, i.e Γ = 0. In other words, coordinates transformations
are made in the neighborhood of a point b such that the connection vanishes at point b:

x→ x′ ∈ neighborhood of b{|Γabc ≡ 0 ∀ a, b, c at b (8.21)

This is because under a coordinate transformation a connection can be chosen such that all
second and first derivatives of g can be set to zero at b, meaning in the neighborhood of b, Γ is
nearly zero and thus dΓ is non-zero:

δΓcab,c =
1

2
gcd [δgda,bc + δgdb.ac − δgab,dc]

= −1

2
(∇c∇bδg

ce) gea −
1

2
(∇c∇aδg

ce)gbc +
1

2
gacgbd�δgcd (8.22)

In normal coordinates, all Γ’s are zero locally and the Ricci tensor is given by:

Rab = Rcacb = Γcab;c − Γcac;b (8.23)

Thus the variation of the Ricci tensor is:

δRab = δΓcab,c − δΓcac;b (8.24)

Hence:

gabδRab = gab(δΓcab,c − δΓcac,b)

= gabδΓcab,c − gabδΓcac,b

= gab
(
−1

2
(∇c∇bδg

ce)gea −
1

2
(∇c∇aδg

ce)gbe +
1

2
gacgbd�δgcd

)
− gab

(
−1

2
(∇b∇cδg

bc)gea −
1

2
(∇e∇aδg

be)gce +
1

2
gaegcd�δgbd

)
= −∇a∇bδg

ab + gab�δgab (8.25)

This looks like a total derivative. Now one can look at the variation of the action:

δSg = C

∫
d4x

√
−g
[
Rabδg

ab − 1

2
Rgabδg

ab

]
−∇a∇bδg

ab + gab�gab

= C

∫
d4x

√
−gGabδgab + C

∫
dM

d3x
√
g3

∫ [
−∇bδg

ab +∇agcdδg
cd
]
n̂a︸ ︷︷ ︸

T1

(8.26)

where C is an arbitrary constant, n̂a is the normal vector to the surface and g3 is a metric of a
3D sub-manifold on the 4D manifold. Term T1 is the boundary term that comes from integrating
by parts and has been written as a 3D surface integral as supposed to a 4D volume integral by an
extension of Gauss’s divergence theorem to 4D. By equating the expression of the Einstein action
obtained for the stress energy tensor in Eq 8.17 to the first term in Eq 8.26:

C ≡ − 1

16πG
(8.27)

where G has been inserted to get the correct units from the Einstein field equations. This
gives the Einstein action:
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SE = − 1

16πG

∫
d4x

√
−gR (8.28)

For now the boundary term is ignored. Using this action, we know how to incorporate general
relativity into a field theory.

3. Beyond the Einstein action

3.1. Scalar-tensor theories. Consider an extension Lagrangian (density):

Lextension = ϕR where ϕ =
1

16πG
(8.29)

Here Newton’s constant is not taken to be constant, instead it form a time varying scalar
field. This is known as Brans-Dickie gravity. It was first introduced to satisfy Mach’s principle in
general relativity, which is how to know weather one is rotating in an empty universe.

Having a scalar in front of the action has a more general range of applicability in terms of scalar-
tensor theories of gravity. The equation of motion is:

gabϕδRab = −ϕ∇a∇bδg
ab + ϕgab�δgab (8.30)

Now when we integrate by parts, we get new contributions to the equations of motion as one
is picking up derivatives of ϕ:

gabϕδRab = −δgab∇a∇bϕ+ δgab�ϕgab (8.31)

Einstein tensor becomes:

ϕGab −∇a∇bϕ+ gab�ϕ (8.32)

In Brans-Dickie theory, the full Lagrangian is:

L = −ϕR+ ω(∂ϕ)2 + 16πLmatter (8.33)

ω is a dimensionless coupling constant, known as the Dickie constant. This is the full La-
grangian with a kinetic term plus the usual matter Lagrangian. The equations of motion are:

ϕGab = 8πTab +∇a∇bϕ− gab�ϕ+
ω

ϕ

(
∂aϕ∂bϕ− 1

2
gab(∂ϕ)

2

)
(8.34)

This is obtained by varying the action w.r.t metric and is an analog of Einstein’s field equations.
To elaborate further I will quote what Brans and Dickie wrote in there paper in 1961[6]:

” The left side of Eq. (11) [which refers to Eq 8.34] is completely familiar
and needs no comment. Note that the first term on the right is the usual source
term of general relativity, but with the variable gravitational coupling parameter
ϕ−1. Note also that the second term is the energy-momentum tensor of the
scalar field, also coupled with the gravitational coupling ϕ−1. The third term is
foreign and results from the presence of second derivatives of the metric tensor
in R in Eq. (6)[which refers to the variation on the action of Brans-
Dickie theory]. These second derivatives are eliminated by integration by parts
to give a divergence and the extra terms.”

If we vary w.r.t ϕ:

R+ 2ω
�ϕ
ϕ

= ω
(�ϕ)2
ϕ2

(8.35)

combining both of these equations of motion gives:

�ϕ
ϕ

=
8πT

3 + 2ω
(8.36)
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where T = T a + a is the trace of the stress-energy tensor. Scalar fields are used many times
in the action of general relativity. Note that matter couples minimally to g:

(∂ϕ)2 = gab∂aϕ∂bϕ (8.37)

But the gravitational action is not Einstein-Hilbert thus the gravitational equations are more
complex. To simplify these one often changes coordinates to make the gravitational equations
like Einstein, but the matter is non-minimally couple i.e one rescales the metric to cancel out the
scalar function ϕ. This is done via a conformal transformation of coordinates:

ĝab = Ω2(x)gab (8.38)

where Ω(x) is a local rescale of the metric. This doesn’t change angles, but changes the
lengths. After this transformation, the new connection terms are:

Γ̂abc = Γabc +Ω−1(Ω,cδ
a
b +Ω,bδ

a
c − gacΩcgbc) (8.39)

and:

R̂bd = Rbd + (2−D)Ω−1∇b∇dΩ− gbdΩ
−1�Ω+ 2(D − 2)Ω−2∇bΩ∇dΩ− (D − 3)gbdΩ

−2(∇Ω)2

(8.40)

where D is the dimension of the manifold. This is called the Einstein frame. So we have
seen here how one of the scalar-tensor theories of gravity works. This is a very interesting area of
research as it seems that in the Einstein gravity one has to include new terms such as dark energy,
dark matter to obtain correct results from the Einstein field equations. However, it is possible
that Einstein gravity does not actually work on the largest of scales and the simplest extension to
Einstein’s theory are these scalar-tensor theories.

4. Non-perturbative field theory

Typically, when one studies a filed theory, one looks at perturbative field theory. Generally
the aim is to quantise the field theory, by looking at excitations around the vacuum. One can
approach Einstein’s gravity in the same way, i.e take a vacuum solution to the field and look at
small perturbations around the field in the vacuum state.

However this approach cannot be applied to things like black holes, as even though the mass
of a black hole is totally arbitrary, it has an event horizon, that makes it different to a small per-
turbation. Hawking’s initial calculation for the evaporation of a black hole was done by putting
field theory on the classical background of a black hole[7].

4.1. Domain wall. First we will consider what the non-perturbed solution is in the context
of field theory and then add gravity. Consider a scalar field:

L =
1

2
(∂ϕ)2 − λ

2
(ϕ2 − η2)︸ ︷︷ ︸
V (ϕ)

(8.41)

Here the potential has two distinct vacuum states (minimum’s). This is an example of spon-
taneous symmetry breaking in field theory, in the sense that this potential has a symmetry around
the vertical axis. But if the theory needs to be quantised one has to pick a vacuum, ±η, and then
look at the excitations around that vacuum. The equation of motion for ϕ is:

�ϕ+ 2λϕ(ϕ2 − η2) = 0 (8.42)

And suppose we want to look at a solution where one side of the universe has the vacuum at
−η and the other side of the universe has a positive η. In this potential, we have not included
gravity, therefore one can say:
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ϕ→ ±η as z → ±∞ (8.43)

as we expect to get the usual wave equation �ϕ = 0 (z is just a Cartesian coordinate).

Figure 40. Potential of scalar field, showing two vacuum states

The equation of motion is simply:

− ϕ′′ + 2λϕ(ϕ2 − η2) = 0 (8.44)

Integrating once by multiply by ϕ′:

− 1

2
ϕ′2 +

λ

2
(ϕ2 − η2) = C(constant) (8.45)

Which has a solution:

ϕ = η tanh (
√
ληz) C = 0 (8.46)

This solution interpolates between these two vacuum states. By a perturbative solution, one
usually means something which is intuitively close to the vacuum solution, so we might imagine
that we can get to the perturbative solution from the vacuum through a set of field configurations,
which may or may not solve the equations of motion themselves, but there is a continuous route
and each of these field configurations has a finite energy. It is possible to go from this solution to
the true vacuum, by moving the regions of ϕ with opposite sign of η, to regions with the same sign
of η. However, since the regions of space have a finite energy, this means moving an infinite region
of space from one configuration to another would cost an infinite amount of energy. Therefore
there is a barrier between either of the two vacuum solutions as seen in Figure 41. tanh is well
approximated by ±1, unless its argument is O(1). Which means we can associate a width with
this ”kink” of order 1√

λη
, which is representative of the mass of the scalar excitations 1√

λη
≈ m−1

ϕ .

Now if we look at the energy momentum tensor:

Tµν = ϕ,µϕ,ν − gµνLϕ

= λη4sech4(
√
ληz)δzµδ

z
ν − gµν

(
−ϕ

′2

2
− V

)
(8.47)

The δ symbols in the first term shows that it is only non-zero if we are looking at a z index.
This can be simplified to:
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Tµν = λη4sech4(
√
ληz)

[
δzµδ

z
ν + gµν

]
(8.48)

If we look at µ = ν = z, then T zz = 0 as (δzµδ
z
z + gzz) = 0. But when µν ̸= z, the δ’s give zero

and we get:

T 0
0 = T xx = T yy = λη4sech4(

√
ληz) (8.49)

Figure 41. Barrier between two vacuum solutions

This is sort off a cosmological constant on the sub-manifold of x, y, t dimensions of the 4D
Minkowski metric. The curve, η4sech4(

√
ληz), can be approximated by a Dirac delta function:

≈ η2(z)(λη2) (8.50)

Figure 42. Energy density of this pseudo cosmological constant

We find the energy by integrating through the kink:
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∫
T 0
0 dz =

∫
λη4sech4(

√
ληz)dz

=
4

3

√
λη3 (8.51)

This gives a finite value of this energy, but its on energy density (i.e energy per unit area
in this case) and z = 0 has an infinite area, therefore the overall energy is infinite. Typically in
gravity, we look at things as isolated systems on average. Even though this solution to the energy-
momentum tensor has infinite energy, let’s ask how does it gravitates. Just because something
has an infinite area does not mean that it will be singular, or not have a good gravitational solution.

When thinking about solutions to Einstein’s equations, one always has to think about a choice
of gauge/coordinates. The kink has t, x, y Lorentz symmetry, which suggests constant curvature
t, x, y space-time. This can now be used to guide the search for an appropriate gauge. We have
done the same thing for the FRW metric, when defining it’s coordinates by assuming isotropy and
homogeneity.

In this case, we consider a metric:

ds2 = A2(z)γµνdx
µdxν − dz2 (8.52)

Which is very similar to FRW metric, except for the variation of the metric comes from z, not
t. This is sometimes known as a warped compactification. In the sense that γµν has a dimensions
(D-1) and z adds an extra dimension, where D is the dimensionality of the full space-time. Using
the Cartan formalism:

w⃗ẑ = d⃗z

w⃗â = A(z)w⃗â0 = A(z)eâµd⃗x
µ (8.53)

The one forms of the first part of the metric, i.e ignoring the dz′ terms are simply the A2(z)γµν .
The γµν is left completely arbitrary at the moment:

d⃗w⃗â =
A′

A
w⃗ : ∧w⃗a −Aθ⃗a0b ∧ w⃗b0 (8.54)

θ⃗ab = θ⃗a0b (8.55)

θ⃗az =
A′

A
w⃗a (8.56)

By keeping the indices in the (D-1) dimensional subspace one can read off, the background

connection one forms. By looking at a mixed components we pick up a factor of A
′

A . The curvature
two form can be found from Cartan’s second equation:

Rab = d⃗θ⃗acb + θ⃗a0c ∧ θ⃗c0b︸ ︷︷ ︸
Ra0b

+θ⃗ac ∧ θ⃗zb (8.57)

The second part can be written as:

θ⃗a0c ∧ θ⃗c0b = θ⃗az ∧ θ⃗czηcb (8.58)

Therefore the curvature two form is:

Rab = Ra0b + θ⃗az ∧ θ⃗czηcb

=
1

2
Ra0bcdw⃗

c
0 ∧ w⃗d0 +

(
A′

A

)2

ηbcw⃗
a ∧ w⃗c(8.59)

The components are:
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Raz =
A′′

A
w⃗z ∧ w⃗a − A′

A
θ⃗a ∧ w⃗b + θ⃗a0b ∧ θ⃗bz

=
A′′

A
w⃗z ∧ w⃗a − A′

A

(
A

A′

)
θ⃗a0b ∧ θ⃗bz + θ⃗a0b ∧ θ⃗bz

=
A′′

A
w⃗z ∧ w⃗a (8.60)

Therefore:

Rabcd =
1

A2
Ra0bcd +

(
A′

A

)2

[δac ηbd − δadηbc] (8.61)

Rµνλτ =
1

A
Rµν0 λτ +

(
A′

A

)2

[δµλδ
ν
τ − δµτ δ

ν
λ] (8.62)

Looking at the z terms:

Rµzνz =
A′′

A
δµν

Rzz =
A′′

A
(D − 1)

Rµν =
A′′

A
δµν +

Rµ0 ν
A2

+ (D − 2)

(
A′

A

)2

δµν (8.63)

if D = 4:

Rzz =
4A′′

A

Rµν =

(
A′′

A
+ 2

(
A′

A

)2

+
κ

l2A2

)
δµν (8.64)

where l is some arbitrary length scale. We want to solve the Einstein equations:

Gyy = Gxx = G0
0 =

κ

l2A2
− A′2

A2
− 2A′′

A
= 8πG(V +

1

2
ϕ′2) (8.65)

Gzz =
3κ

l2A2
− 3A′2

A2
= 8πG(V − 1

2
ϕ′2) (8.66)

�ϕ = − 1

A3
∂zA

3∂zϕ = −2λϕ(ϕ2 − η2) (8.67)

In flat space Eq 8.65 is a sech4 function and Eq 8.66 = 0 (from Eq 8.47). Suppose:

8πGη2 << 1 (8.68)

Then:

8πGV = O(8πGη3)︸ ︷︷ ︸
ϵ(<<1)

× λη2︸︷︷︸
Area−1

(8.69)

This is stating that η << Mp, where Mp, i.e η is much less than the Planck scale, which is a
reasonable assumption. The R.H.S of Eq 8.65 and 8.66 has dimensions of Area−1, which has the
same units as Eq 8.69, thus λη2 sets a length (energy) scale and O(8πGη2) gives the gravitational
interaction and we are going to look at a situation in which the gravitational interaction is small.

Therefore are can solve the equations of motion, perturbation. Note that the does not mean
that we are close to flat space necessarily. It is saying that one can write the A function as:



4. NON-PERTURBATIVE FIELD THEORY 145

A(z) = 1 +O(ϵ) (8.70)

and:

ϕ = η tanh (
√
ληz) +O(ϵ) (8.71)

Away from the wall, Tµν = 0, therefore Gµν = Rµν = 0 aswell. Therefore from Eq 8.65:

A′′ = 0 (8.72)

(A′)2 =
κ

l2
(8.73)

Therefore κ must be positive and the γµν is a de Sitter type solution i.e an analog of a sphere:

A = 1± z

l
(8.74)

This is the general shape of the solution away from the wall. Now we have to relation this
solution to the perturbative terms. So now we use the perturbed solution and put that into the
R.H.S of the Einstein equations:

A′′ = −ϵλη
2

2
sech4(

√
ληz) (8.75)

Integrate:

A′ = −ϵ
√
ϵη(tanh(

√
ληz)− 1

3
tanh3(

√
ληz)) (8.76)

Set:

A′(0) ≡ 0 (8.77)

by looking for a symmetric solution. This implies:

l =
3

2ϵ
√
λη

(8.78)

so if ϵ is small, which it is, then the length l, scale is large. Integrating Eq 8.76 again, we get
the solution:

A(z) = 1− ϵ

[
2

3
log (cosh (

√
ληz))− 1

6
sech2(

√
ληz) +

2

3
log z

]
(8.79)

For large
√
ληz; the solution is approximately:

A(z) ≈ 1− 2

3
ϵ(±

√
ληz) (8.80)

Which has the correct form of Eq 8.70. This looks correct, but one must check what happens
when z = ±l, as it appears to be an event horizon or singularity. One would not expect it to be a
singularity as the metric was flat space. What has actually happened, is that we have written out
flat space in a strange coordinate system:

ds2 =
(
1− z

l

)2
(dt2 − cosh2 tdΩ2

2)− dz1 (8.81)

A constant curvature space time (de-Sitter space) written in global coordinates has a compact
spatial section. This is hidden away in the γ as we did not specify what γ was. Therefore the wall
actually gives two space-times as seen in Figure 43.

To summarise; the idea behind discussing domain walls, was to solve the Einstein equations
with some matter i.e non-zero Tµν . Non-perturbative field theory was introduced to show that
one could have a stable solution, that was distinct from the vacuum solution as it took an infinite
energy to go from the solution to the vacuum solution.
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The domain wall itself has one direction removed from it, therefore it is a 3D sub-manifold of
the 4D space-time. As far as the gravity was concerned, for the pure wall space-time, most of the
space was vacuum except for that narrow region in the wall (as shown in Figure 42), which was
approximated by a Delta function.

2

ݖ ൐ Ͳ ݖ ൏ Ͳ 

Figure 43. Non-perturbative solution to Einsteins equations gives rise to two
distinct de-Sitter space-times

5. Sub-manifolds

The reason behind discussing sub-manifolds comes directly from the example of a domain wall
approximated by a (D-1) sub-manifold. A natural extension would be to look at sub-manifolds in
(D-2), (D-3) etc.

Figure 44. Sub-manifold Σ with normal vector, n⃗µ

5.1. Gauss-Codazzi formalism. Imagine a sub-manifold Σ, of a manifoldM , of dimension
(p+1):
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Σ ⊂M (8.82)

The +1 can be thought of as a time dimensions and p being the spatial dimension. There is
no real mathematical motivation for this way of labeling dimensions. It’s simply because when
sub-manifolds are used in general relativity, they will be in the context of physical objects, hence a
time component is needed. Σ is going to be a differentiable manifold in its own right, of dimension
(p+1) and it is also a subset of an underlying manifold M .

The co-dimension of Σ, n, is defined as:

D − (p+ 1) = n (8.83)

which is the complement of dim(Σ), i.e the number of independent dimensions which do not
lie in Σ but are present in M . Hence there exist n linearly independent normal vectors to the
sub-manifold Σ. Imagine taking internal coordinate charts on Σ, which has a set of basis vectors,
σa, then normal vectors will follow:

σa.n⃗µ = 0 (8.84)

where σa are the basis vectors on the vector space that is used to parametrize Σ and the dot
represents the usual inner product. This is a statement that there is no component of n⃗µ along any
of the basis vectors, hence are perpendicular. Since the basis vectors can be defined as directional
derivatives, this statement can be re-written as:

n⃗µ
∂xµ

∂σA
= 0 xµ(σA) (8.85)

the xµ(σA) defines the coordinate functions of Σ within of M .

5.2. 1st fundamental form. Since Σ is a sub-manifold of M , it must inherit some of the
structure of the manifold M . We have a very good intuitive picture of this, for example, consider
a 2D surface like a paper sheet embedded on a 3D surface like a sphere. The paper sheet, which
is initially flat, will take on a spherical shape on the surface of the sphere, as long as the paper
sheet is not rigid.

Definition 24. The 1st fundamental form of Σ is given by:

hab ≡ gab +
b∑
i=1

(−)inianib (8.86)

where:

i =

{
−1 for time-like n

+1 for space-like n
(8.87)

h is defined as the first fundamental form of Σ and is like taking the metric on the manifoldM
and projecting out all normal directions. Therefore h is a projection operator, acting within the
tangent space of M , which takes a general vector and projects it down to its component parallel
to the sub-manifold Σ. The minus sign being in the definition has no mathematical motivation.
Again, we are using the fact that we know that space-time manifolds have one time dimension
and the time and space dimensions differ in sign.

hab is equation to the metric that the sub-space inherits from M . The induced metric is de-
fined by:

γAB = gµν
xµ

∂σA
∂xν

∂σB
(8.88)
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γ and h are physically the same thing and contain the same information. Mathematically these
are different objects as hab has ab indicies and these refer to the tangent space of the manifold,
M , restricted to a sub-space of this manifold. γAB on the other hand refers to Σ as a manifold in
its own right, and thus the metric is intrinsic to the sub-manifold.

Figure 45. Sub-manifold projected onto a manifold

∂xµ

∂σA
is a map from the cotangent space of Σ to the cotangent space of M .

5.3. 2nd fundamental form.

Definition 25. The 2nd fundamental form is also known as the extrinsic curvature and is
defined as:

Kiab ≡ ∇cnidh
c
(ah

d
b) (8.89)

where ∇c represents the covariant derivative. Therefore what we are doing is taking the
covariant derivatives of the normals and projecting them parallel to the sub-manifold using the
first fundamental form.

Figure 46. Tangent vectors to the sub-manifold varying from point to point,
showing extrinsic curvature.
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We can recognize extrinsic curvature when surface is not flat. For example a sheet of paper
can be folded in on itself so that it appears curved, its the space in which it sits, that is curved.
As one can simply unravel the sheet of paper and it would appear flat. This type of curvature is
extrinsic curvature.

Example 25. Consider a sub-manifold of R3, defined by a cylinder of radius a:

x2 + y2 = a2 ⊂ R3 (8.90)

A unit normal, n⃗a, would be just (cos θ, sin θ, 0). In terms of hab (first fundamental form):

hab = δab − nanb

=

 sin2 θ − sin θ cos θ 0
sin θ cos θ cos2 θ 0

0 0 1

 (Cylindrical coordinates)

=

0 0 1
0 a2 0
0 0 1

 (Spherical polar coordinates) (8.91)

In spherical polar coordinates it becomes obvious that one has projected from R3 to some 2D
sub-manifold since the hab contains a block matrix:(

a2 0
0 1

)
(8.92)

with all other elements zero, show that even though the manifold is 3D, the object represented
by the 1st fundamental form is a sub-manifold of a 3D space. Therefore a natural set of coordinates
for this surface is:

σA = {θ, z} (8.93)

The intrinsic metric is:

γAB =

(
a2 0
0 1

)
(8.94)

The extrinsic curvature is:

Kab = ∇anb = −Γrab (in polar coordinates) (8.95)

The normal in polar coordinates is given by ∂
∂r :

Kab =

0 0 0
0 a 0
0 0 0

 (8.96)

Thus the extrinsic curvature is non-zero.

Another way of writing KiAB is:

KiAB =
∂xµ

∂σA
∂xν

∂σB
∇µniν

= −niν
∂xµ

∂σA
∇µ

(
∂xν

∂σB

)
≡ −niνDAD

Axν (8.97)

The i index is there to show that in principle there are many normals. What can happen, if
the co-dimension is greater than 1, the normals can vary of ”twist”, through the sub-manifold as
shown in Figure 46.
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Thus we have to be able to link the normals as they vary from point to point in the sub-
manifold.

Definition 26. This is done by normal fundamental forms:

βu,j = n,ν∇µn
ν
j (8.98)

This takes the covariant derivative of a normal and instead of projecting it parallel to the
manifold, it is projected perpendicular to the manifold. Therefore for co-dimension greater than
1, the tangent space splits and can have a non-trivial structure itself. We will assume that nµi
extend geodesically out of Σ into M and ∇jnj = 0, i.e the normal covariant derivative of the
normals is zero.

5.4. Gauss equation for curvature. The Gauss equation relates the curvature of M and
Σ:

(p+1)Rabcd =
(D)Ra

′

b′c′d′h
a
a′h

b′

b h
c′

c h
d′

d︸ ︷︷ ︸
T1

−
n∑
i=1

(−)i[Ka
cKibd −Ka

idKibc]︸ ︷︷ ︸
T2

(8.99)

where Rabcd is the Riemann curvature of the sub-manifold and Ra
′

b′c′d′ is the Riemann curvature
of the manifold. T1 gives the intrinsic curvature; we project down the manifold intrinsic curvature.
The T2 term shows that one also needs some extra parts that are related to the extrinsic curvature,
to get the overall curvature.

Example 26. Let’s try to reproduce this for a co-dimension 1, sub-manifold. Use Riemann
identity:

2(p+1)∇(p+1)
[c ∇d]V

a =(p+1) RabcdV
b (8.100)

where:

V bhab = V a (8.101)

Here we are imagining a vector, which is parallel to Σ (it lies in the subspace of the tangent
space parallel to Σ) and then using the Riemann identity acting on this vector.

(p+1)RabcdV
b = haeh

f
ch

p
d∇

(p+1)
f ∇pV

e − T (c↔ d)

= haeh
f
ch

p
d∇f (h

q
ph
e
r∇qV

r)− T (c↔ d) (8.102)

the T (c↔ d) term denotes the first term, with c and d indices swapped, this comes from the
anti-symmetry of the Riemann identity. Here we are taking the manifold covariant derivative and
projecting down with every free index, in the first line this has been done for the first index.

Now we act on all the terms in the bracket with the covariant derivative, ∇f :

(p+1)RabcdV
b = haeh

f
ch

q
dh
e
r∇f∇qV

r0︸ ︷︷ ︸
T1

−T1(c↔ d)

+ haeh
f
ch

p
d(∇fh

q
p)h

e
r∇qV

r︸ ︷︷ ︸
T2

−T2(c↔ d)

+ haeh
f
ch

f
dh

q
p(∇fh

e
r)∇qV

r︸ ︷︷ ︸
T3

−T3(c↔ d) (8.103)

Substitute in for the expression of the first fundamental form from Eq 8.86. The first part is
the metric and for no torsion, the covariant derivative of the metric is zero. The remaining terms
give:



5. SUB-MANIFOLDS 151

hqp = δqp = δqp(−)inpn
q (8.104)

this is Eq 8.86 without the metric term (as it’s covariant derivative is zero) and so on for the
rest of the h’s aswell. However by contracting a normal with a first fundamental form we get zero
by definition:

nph
p
d = 0 (8.105)

Therefore acting with the covariant derivative on the hpq terms will give a product of two terms
and then contacting with the 1st fundamental forms that remain, will give zero, thus Eq 8.103
simplifies1:

(p+1)RabcdV
b = haeh

f
ch

q
dh
e
r∇f∇qV

r︸ ︷︷ ︸
T1

−T1(c↔ d)

(−)i haeh
f
ch

p
dh
e
rn
q(∇fnp)∇qV

r︸ ︷︷ ︸
T2

−T2(c↔ d)

(−)i haeh
f
ch

q
dnr∇fn

e∇qV
r︸ ︷︷ ︸

T3

−T3(c↔ d) (8.106)

In the first line we are anti-symmetrizing of c and d which means we are also anti-symmetrizing
on f and q and thus in the derivatives in front of V r. Therefore we can use the Riemann identity.
In the second derivative of V , which is zero, as V is defined to be parallel to the manifold. In the
last line, there is a covariant derivative of n, with index f and e and there are terms haeh

f
c outside,

which means we will get an extrinsic curvature. The nr∇qV
r term follows:

nr∇qV
r = −V r∇qnr (8.107)

because V and n are also orthogonal:

(p+1)RabcdV
b = haeh

f
ch

q
dh
e
r
(D)RrqpfqV

p − (−)ihaeh
f
eh

q
dnr(∇fn

e)∇qV
r − T (c↔ d)

= haeh
f
ch

q
dh
e
r
(D)RrqpfqV

p − (−)iKa
c V

rKdr + (−)iKa
dV

rKcr (8.108)

Re-labeling:

(p+1)RabcdV
b = haa′h

c′

c h
d′

d R
a′

bc′d′V
b︸ ︷︷ ︸

Tα

(−)i [Ka
dKbc −Ka

cKbd]V
b︸ ︷︷ ︸

Tβ

(8.109)

Which reproduces the Gauss equation in 1D. So the Riemann curvature of the sub-manifold,
is composed of the Riemann curvature of the manifold and the extrinsic curvature coming from
the way in which the sub-manifold is embedded in the manifold.

Going back to the cylinder, it has a extrinsic curvature, but no intrinsic curvature (as R3

has no curvature as it is just the Euclidean space), therefore T1 is zero. However since the co-
dimensionality is 1 and the K’s are anti-symmetrised, they will cancel leaving:

Rabcd ≡ 0 (8.110)

for a cylinder.

1If simplifies is a word that can be used for this expression!
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6. Applying Gauss-Codazzi formulation

6.1. Israel equations. Israel equations are a set of equations of motion for a co-dimension
1 sub-manifold, when viewed as being a physical object. Recall the domain wall depended on one
direction, which we choose to be z. To begin with consider the for dimensional Riemann tensor,
with some normal vector n:

Rabcdn
bnd ≡ nd(∇c∇d −∇d∇c)na (8.111)

Here we assume n is geodesic, therefore ∇nn = 0:

Rabcdn
bnd = Kd

cKda −∇nKac (8.112)

The normal covariant derivative of K, can be replaced by a Lie derivative:

Rabcdn
bnd = −(LnKac −∇an

dKdc −∇cn
dKda)−Kd

cKda

= −LnKac +Kd
aKdc (8.113)

So we have re-written the Riemann tensor with two normal components in terms of extrinsic
curvature. Eventually we want to discuss the Einstein equations, which can be re-written as:

Rab = 8πG(Tab −
1

2
Tgab) (8.114)

foe the domain wall:

Tab = σ(z)hab (8.115)

i.e there was no normal component of the stress-energy tensor and all the parallel components
to be the same (proportional to the metric). This is what motivates the re-writing of the Einstein
field equations, in the form Eq 8.114. Recall the Gauss equation in terms of a manifold in 4D with
a sub-manifold in 3D:

(3)Rabcd =
(4) Ra′b′c′d′h

a′

a h
b′

b h
c′

c h
d′d− (KacKbd −KadKbc) (8.116)

The normal has been taken to be space-like, therefore has only one component and only one
K. The first term on the R.H.S is a contraction between the 4D Riemann tensor, with the induced
metric h, but h is just g + nn, therefore the Ricci tensor is:

(3)Rbd =
(4) Rb′d′h

b′

b h
d′

d + (4)Rabcdn
anc︸ ︷︷ ︸

T1

−KKbd +KbcK
c
d (8.117)

This is the reason behind writing Eq 8.113 in that form is that now it can be substituted into
T1 in the equation above:

(3)Rbd =
(4)Rb′d′h

b′

b h
d′

d︸ ︷︷ ︸
T2

+LnKbd + 2KbcK
c
d −KKbd (8.118)

T2 can be substituted for from the Einstein equations in the form of Eq 8.114:

(3)Rbd = 8πG(Ta′b′h
a′

a h
b′

b − 1

2
Thab)− LnKbd + 2KbcK

c
d −KKbd (8.119)

So far, the Gauss equation has been to analyse the parallel components of the Einstein equa-
tions. If Tab is sharply localised (at z), then one can approximate it by a delta function:

Tab ≈ δ(z)Sab (8.120)

This was done for the wall, where δ(z) ≈4 z. Thus defines Sab:

Sab ≡
∫ ∞

−∞
dzTab (8.121)
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The Ricci tensor, (3)Rbd, is an intrinsic curvature, of the sub-manifold, therefore it does not
have a delta function(i.e not sharply localised). (3)Rbd, is regular as the width of the object goes
to zero. K must also be regular, as K is a property of Σ. However, the projection of the Einstein
equations parallel to the wall, give terms involving the stress-energy tensor, which is strongly
localised as defined by Eq 8.120. The last term remaining, LnKbd, must also be sharply peaked
in order to cancel with the stress-energy tensor.

If we integrate Eq 8.119 from one side of the wall to the other, the K terms will give a finite
value times the width of the wall. Whereas the T and LK terms will give something O(1),
therefore (3)Rbd, will be of O(width of wall):

8πG(Sab −
1

2
Shab) =

∫
LnKab = K+

ab −K−
ab (8.122)

This looks like some form of Einstein equation. In states that the extrinsic curvature has
to vary, by looking at the difference across the wall, and that difference has to be equal to the
combination of the stress-energy tensor. Taking the trace of the equation above:

− 4πGS = K+ −K− (8.123)

Which can be re-written as:

∆Kab −∆Khab = 8πGSab (8.124)

these are the Israel equations. These are the analog of the Einstein equations (for co-dimension
1), integrated out over the strongly localised source of energy/matter. These equations describe a
highly localised physical object that is a hyper-surface. Normal points into the bulk on (+) region
and out of the bulk on the (-) region. The normal is continuous over the bulk field.

Let’s check these equations by re-deriving the domain wall solution, which looked like they had a
horizon. Let’s look at a hyperboloid in Minkowski space:

Figure 47. Hyperboloid in Minkowski space.

The hyperboloid in Minkowski space can be parametrised by:

Xµ = (l sinh
(τ
l

)
, l cosh

(τ
l

)
, θ, ϕ) (8.125)

Thus Σ can be written as:

Σ : xµ(σA), σA = {τ, θ, ϕ} (8.126)
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This defines the hyperbolic surface. Now we want to check what happens when we apply
Israels equations to the surface (and check that the result is the same). The normal to the surface
is:

nµ = ±(− sinh
(τ
l

)
, cosh

(τ
l

)
, 0, 0) (8.127)

This is a normal to the surface. The two signs are present to represent the inward and outward
normals respectively. Note that:

γABdσ
AdσB = dτ2 − l2 cosh2

(τ
l

)
dΩ2

2 (8.128)

This is just stating that if we look at the hyperboloid on the induced metric, we get de-Sitter
space. Computing one of the K’s:

Kθθ = −ΓRθθnR = RnR

= ±l cosh2
(τ
l

)
= ∓gθθ

l
(8.129)

as R = l cosh
(
τ
l

)
, nR = ± cosh

(
τ
l

)
. This just shows that K ∝ g (in this case constant

of proportionality is ∓l). If we take the inside of the hyperboloid and assume that the wall is
symmetric on both sides (with the different signs of each side):

K+
ab −K−

ab = 2K+
ab = −2

l
hab (8.130)

Therefore from Eq 8.124:

∆Kθθ = −2

l
gθθ = −4πGσgθθ (8.131)

Therefore:

l =
1

2πGσ
(8.132)

Which is the energy value per area, same as was obtained for the domain wall in Eq 8.78. To
get the original expression, make a coordinates transformation:

Figure 48. Metric shown in Eq 8.134

R = l
(
1− z

l

)
cosh

(τ
l

)
T = l

(
1− z

l

)
sinh

(τ
l

)
(8.133)
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this gives the z > 0 metric for the domain wall:

ds2 =
(
1− z

l

)2
(dτ2 − l2 cosh2

(τ
l

)
dΩ2

2 − dz2) (8.134)

R and T are the flat space, radial coordinates. This shows that the Israel equations give a
physical meaning to a sub-manifold.

7. Boundary term in Einstein action: Gibbons-Hawking term

Going back to the Einstein action and the calculation of it’s variation in Eq 8.26. Recall that
during the integration by parts we had a boundary term, T1 in Eq 8.26, which we simply ignored.
Now let’s go back and check weather this boundary term can be incorporated into the variation of
the action. In general, T1 in Eq 8.26 cannot be made zero by the variation of the action because
it depends on how δg extends into the bulk (no matter/energy region). The idea now is to add a
boundary term, that will cancel these normal derivatives.

The obvious term to include in the boundary term is a scalar and thus a good choice would
be the trace of the extrinsic curvature, because it is the other curvature term (other than the Ricci
scalar, which forms the Einstein action). The trace of the extrinsic curvature is the covariant
derivative of the normal:

K = ∇an
a (8.135)

Since we are thinking about a variational principle, δh (h is the induced metric) is held fixed
on the boundary. Therefore the variation of the normal at the boundary will give the variation of
the metric:

δgab = naδnb + nbδna (8.136)

We can choose n to be space-like, without any loss of generality:

δK = ∇aδn
a + δΓaabn

b (8.137)

δna is given in terms of the normal components of δg:

δK = −1

2
∇a(n

anbncδg
bc)− 1

2
∇nδg

= −1

2
∇nδg −

1

2
(∇an

a)(nbncδg
bc)− 1

2
(∇anb)(n

ancδg
bc)− 1

2
(∇anc)(n

anbδg
bc)− 1

2
(∇aδg

bc)(nanbnc)

= −1

2
∇nδg −

1

2
Knbncδg

bc − 1

2
Knbncδg

bc − 1

2
Kncnbδg

bc − 1

2
nbncn

a∇aδg
bc

= −1

2
∇nδg −

1

2
Knbncδg

bc − 1

2
nbncn

e∇aδg
bc (8.138)

Substitute for T1 from induced metric:

δK = −1

2
∇nδg −

1

2
Knbncδg

bc − 1

2
Knbncδg

bc − 1

2
nb(h

d
c − δdc )∇dδg

bc

= −1

2
∇nδg +

1

2
nbδ

d
c∇dδg

bc − 1

2
Knbncδg

bc − 1

2
hdc∇d(nbδg

bc) +
1

2
δgbcKbc (8.139)

Now lets look at the variation of this boundary term (ignoring the Ricci scalar for now, as we
already know how that works):

δ

∫
K
√
qd3x =

∫
d3x

√
g

[
1

2
δgbc(Kbc −Khbc)︸ ︷︷ ︸

T1

−1

2
∇c(nbδg

bc)︸ ︷︷ ︸
T2

+
1

2
(nb∇cδg

bc −∇nδh)︸ ︷︷ ︸
T3

(8.140)
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T2 is zero as the metric is on the boundary and therefore its derivative is zero. T1 has a δgbc in
it, which is good as we expect the variation of the curvature on the boundary to be proportional
to the metric on the boundary. T3 is precisely the term needed to cancel the derivative coming
from the variation of the bulk action. Therefore:

δ

SE − 1

8πG

∫
dM

[K
√
q]︸ ︷︷ ︸

Tα

 = 0 (8.141)

Tα is known as the Gibbons-Hawking boundary term, SGH . Then the variation principle is
satisfied and we no longer need to fudge the calculations by setting the boundary terms to zero.

7.1. Revisiting the Israel equations. If we split up the space-time into the two regions
shown in Figure 49, M+ and M−, then the action is:

S = S+
E + S−

E + S+
GH + S−

GH + Swall (8.142)

n 

n 

(-) region (+) region 

Figure 49. Space-time region, represented by manifold M , with a sub-manifold
Σ, representing the domain wall (a small localised region of matter)

where:

S+
E = Einstein action in (+) region of space-time

S−
E = Einstein action in (-) region of space-time

S+
GH = Gibbons-Hawking action term in (+) region of space-time

S−
GH = Gibbons-Hawking action term in (-) region of space-time

Swall = Matter part of the action in the region of the wall (8.143)

Varying the action:

δS = 0 ⇒ Gab = 0 (8.144)

This is the solution for the bulk (as there is no matter/energy). The action in the domain
wall:

δSwall
δgab

=
1

16πG

[(
K+
ab −K+hab

)
+ (K−

ab −K−hab)
]

(8.145)
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In this region of the domain wall (described by a sharp localised peak in the matter and it is
described on a sub-manifold Σ). From the Israel equation, 8.124:

1

2
Sab|wall =

1

16πG
[∆Kab −∆Khab]Israel (8.146)





CHAPTER 9

Black holes

This chapter is strongly related to the first few chapters of [8].

1. Black hole thermodynamics

Within Einstein gravity, black holes are very simple when there in the vacuum equations. An
example that has been previously studied is the usual Kerr metric:

ds2 = dt2 − Σ

∆
dr2 − Σd2 − 2GMr

Σ
(dt2 − a sin2 dϕ)2 − (r2 + a2) sin2 θdϕ2 (9.1)

also written as:

ds2 =
∆

Σ
(t− a sin2 θdϕ)2 − Σ

∆
dr2 − Σdθ2 − sin2 θ

Σ
((r2 + a2)dϕ− adt)2 (9.2)

where:

∆ = r2 + a2 − 2GMr

Σ = r2 + a2 cos2 θ

a =
J

M
J = Angular momentum

M = Mass of black hole
∂

∂t
,
∂

∂ϕ
= Killing vectors (9.3)

This represents a rotating black hole. Notice that there are very charges, i.e M,a are the only
ones. There would also be Q if the black hole had an electric charge. In which case:

∆ = r2 + a2 +GQ2 − 2GMr (9.4)

The area of the black hole:

Area = 4π(r2+ + a2) (9.5)

and:

r+ = GM +
√
G2M2 − a2 −GQ2 (9.6)

Suppose a material object falls into the black hole. One would expect that on its journey
into the black hole, the solutions might carry some dynamics. However once the particles has
fallen into the black hole to settle down into a new stable configuration with a new mass, angular
momentum and charge, if the particle falling in has an electric charge. First let’s look at what
happens to the area of the event horizon:

159
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δA = 8πr+δr+ + aδa

= 8πr+

[
GδM +

G2MδM − aδa−GQδQ

r+ −GM

]
+ 8πaδa

= 8π

[
Gr2+δM

r+ −GM
− GMaδa

r+ −GM
− GQr+δQ

r+ −GM

]
(9.7)

But:

a =
J

M
(9.8)

therefore:

δa =
δJ

M
− JδM

M2
(9.9)

Substitute Eq 9.9, 9.8 into Eq 9.7:

δA = 8π

(
Gr2+

r+ −GM
δM − GaδJ

r+ −GM
+

Ga2δM

r+ −GM
− Gr+QδQ

r+ −GM

)
(9.10)

Re-arrange for charge in mass of black hole:

δM =
r+ −GM

2π(r2+ + a2)︸ ︷︷ ︸
T1

δA

4G
+ΩδJ︸︷︷︸

T2

+ϕδQ︸︷︷︸
T3

(9.11)

Ω =
a

r2+ + a2
≡ Angular velocity

ϕ =
Qr+

r2+ + a2
≡ Electrostatic potential (9.12)

Now consider the thermodynamic equation:

dU = TdS + uidQi (9.13)

By analogy between Eq 9.13 and Eq 9.11, it appears that there is a direct correspondence
between thermodynamics and black holes. To see it explicitly, let’s look at the Schwarzschild
solution, i.e set r+ = 2GM and a = 0, thus T1 is:

GM

2π(4G2M2)
=

1

8πGM
(9.14)

Which is what we previously argued was the Schwarzschild temperature which suggests that
T1 is actually a generalised expression for the temperature and thus δA

4G should be equal to the
entropy:

δS =
δA

4G
(9.15)

At the moment this is not a formal derivation of any king, it is just a curiosity that there
appears to be a correspondence between area and entropy.
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1.1. Euclidean path integral approach. To formalise this correspondence between black
holes and thermodynamics, we embed the classical solutions to Einstein’s equations, into a quan-
tum background. This is not attempting to quantise these solutions in any way, it is simply
a different way to look at the solutions. We will try to construct a partition function for the
gravitational theory. In general one would take a trace of states:

Z ≈ tr(e−βH) (9.16)

where β = 1
T in units that kB ≡ 1, thus T has units of energy. H is the Hamiltonian:

H ≈
∫
d3xH ≈ 1

β

∫
d3xdtH ≈ IE

β
(9.17)

where IE is the Euclidean action:

IE =

∫
d4x

√
g

16πG︸ ︷︷ ︸
≡IEH

+

∫
d3x

√
hK

8πG︸ ︷︷ ︸
≡IGH

(9.18)

We expect Z to be dominated by saddle points:

Z ≈
∑

classical solutions, β

e−IE (9.19)

We postulate that the contribution is dominated by classical solutions with periodicity β.
There is no Ricci scalar, R = 0, for Schwarzschild and Kerr, therefore there is no Einstein action
and IEH = 0. Therefore the total action must come from the Gibbon-Hawking term, IGH :

IE =

∫
dM

d3x

√
hK

8πG
(9.20)

dM is the surface at the boundary. Remember h is the induced metric. Let’s look at the
Schwarzschild solution as it is simple yet shows all the important points of a black hole:

ds2 =

(
1− 2GM

r

)
dτ2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2
2 (9.21)

We have already seen that in polar coordinates, light rays can reach the singularity at r = 0,
if the τ coordinates have periodicity 8πGM .

Figure 50. Metric in Eq 9.21.

Therefore the Euclidean Schwarzschild metric looks like this, as at large r, the coefficient of
dτ goes to 1. As r → 2GM , the space looks, locally as r2 in the vicinity of the origin. The size
of the τ circles is

(
1− 2GM

r

)
, and eventually reaches 0 as r → 2GM . Topologically this is R2

and then one has a two sphere on top, S2, S2 × R2. But this is all just the Einstein part of the
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solution which has the action zero as R = 0. The question is, how do we find a boundary to this
space-tie to get the Gibbons-Hawking term. The idea is to evaluate this solution to some finite
radius, R >> GM and then see what happens to the solution in this limit. On the surface , the
metric is 3D:

dS2
3 =

(
1− 2GM

R

)
dτ2 +R2dΩ2

2 (9.22)

this has a 2 sphere of radius R and then a single S1. τ has a periodicity 8πGM , as usual. The
inward pointing normal n, has the form:

n = −
√

1− 2GM

R

∂

∂r
(9.23)

The extrinsic curvature is:

K = ∇an
a =

1

r2
∂r(r

2nr)

= − 2

R

√
1− 2GM

R
− GM

R2

1√
1− 2GM

R

(9.24)

Therefore the boundary term is: ∫
dM

K
√
−hdτdϕdθ (9.25)

but:

K ̸= K(τ, ϕ, θ) (9.26)

therefore integrating over them simply gives numerical factor of 4πβ:

∫
dM

K
√
−hdτdθdϕ = −4πβR2

 2

R

(
1− 2GM

R

)
︸ ︷︷ ︸

Tα

+
GM

R2


= −4πβ [2R− 3GM ] (9.27)

Now, the leading order term is proportional to R, therefore we cannot take the boundary to
be at R → ∞ as the action will also becomes ∞. However, by comparing the equation above,
especially, Tα, with the Schwarzschild metric solution. Then the extrinsic curvature for flat space-
time, K0, must be:

K0 = − 2

R
(9.28)

Therefore:

∫
K0

√
hdx = −4πβR2

√
1− 2GM

R

(
2

R

)
≈ −4πβ[2R− 2GM +O

(
1

r

)
] (9.29)

Therefore the flat space answer is also ∞ as R → ∞. This means that this divergent term is
not physics (as it is also present in the flat space). Therefore we can simply subtract this vacuum
solution by the Schwarzschild solution, to get the true value for the action:

ISCHW − IV acuum =
1

8πG
[−4πβ[−GM ]] =

βM

2
(9.30)
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This is sometimes called the re-normalised action. The entropy is given by the usual statistical
formula:

S = β2 ∂

∂β

[
−β−1 lnZ

]
(9.31)

where Z = −e
βM
2 in this case. Therefore:

S =
β2

2

∂M

∂β

=
β2

16πG
= 4GπM2

=
4π

4G
(2GM)2 (9.32)

By comparison to Eq 9.15:

Area = 4π(2GM)2 (9.33)

Therefore we have shown that for the Schwarzschild black hole, the entropy is indeed A
4G .

From the microscopic viewpoint:

S ≈ log (#of micro states) (9.34)

but classically, black holes have very few charges. Also notice that T ∝ 1
M , therefore black

holes have a negative heat capacity, just like stars do. The energy released is given by the rate of
change of mass:

Ṁ ≈ σT 4A

≈ σ(GM)2

(8πGM)4

≈ 1

M2
(9.35)

Therefore the lifetime of a black hole can be found by integrating over this expression, therefore
the lifetime is ∝M−3.

2. Kaluza-Klein theory

As far as we observe, we live in a 3D space, with 1 time dimension, however the idea of extra
dimensions keeps on coming up in physics. The first concrete model of extra dimensions was
thought up by Kaluza and Klein after Einstein came up with general relativity.

In 1920/21, Kaluza had an idea of adding new dimensions to space-time in order to unify Maxwell’s
equations and the theory of electro-magnetism with general relativity and gravity. In fact, Ein-
stein resisted this idea for a number of years, until accepting it as a valid concept to discuss in
theoretical physics at the time. By adding an extra dimension, Kaluza showed that one could
almost obtain the Maxwell-Einstein theory that he wanted, accept that there was an extra scalar
field, which then Klein suggested, needed to be stabilised in order for the theory to work (he never
gave a mechanism for stabilising it).

Now, a century later, the whole concept of extra-dimensions, where these extra-dimensions has
been stabilised as Klein suggested. This is of course in the theory of super strings. The idea in
Kaluza-Klein is to look at gravity in 5D, except for how the 5D geometry would look like in 4D
perspective, i.e the geometry depends only on 4 of the 5 dimensions:
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ds2 = gµνdx
µdxν︸ ︷︷ ︸

T1

− e2σ[dψ +Aµdx
µ]2︸ ︷︷ ︸

T2

(9.36)

where:

ν, µ ∈ {0, 1, 2, 3} (9.37)

and:

σ = σ(xµ) Aµ = Aµ(x
µ) (9.38)

T1 represents the 4D space that we live in. ψ is the 5th dimensions, but none of the terms
have any ψ dependence in them. Therefore ∂

∂ψ is a killing vector. To obtain Einstein’s equations,

we need the Ricci tensor and scalar. Using the Cartan formalism; Identify basis:

w⃗ψ̂ = eσ[dψ +A]

w⃗â = eâµd⃗x
µ (9.39)

d⃗w⃗ψ̂ = σ,âw⃗
â ∧ w⃗ψ̂ + eσF (≡ d⃗a)

d⃗w⃗â = eâµν d⃗x
ν ∧ d⃗xµ (9.40)

Reading of the connection 1 forms:

θ⃗ψ̂â = σ,âw⃗
ψ̂ +

1

2
eσFâb̂w⃗

b̂

θ⃗â
b̂

= θ⃗â0 b̂ +
1

2
eσF â

b̂
w⃗ψ̂ (9.41)

Recall the Cartan equation:

Râ
b̂
= d⃗θ⃗â

b̂︸︷︷︸
T1

+ θ⃗âĉ ∧ θ⃗ĉb̂︸ ︷︷ ︸
T2

+ θ⃗â
ψ̂
∧ θ⃗ψ̂b̂︸ ︷︷ ︸
T3

(9.42)

Computing the terms individually:

T1 = d⃗θ⃗â
b̂
+

1

2
eσ[σ,ĉw⃗

ĉ ∧ w⃗ψ̂F â
b̂
+ F â

b̂
+ F â

b̂ĉ
w⃗ĉ ∧ w⃗ψ̂ + F â

b̂
(σ,ĉw⃗

ĉ ∧ w⃗ψ̂ + eσF )]

T2 = θ⃗â0c ∧ θ⃗c0b +
1

2
eσ[θ⃗â0ĉ ∧ F ĉb̂ w⃗

ψ̂ + F âĉ w⃗
ψ̂ ∧ θ⃗ĉ

0b̂
]

T3 = σ,âw⃗ψ̂ ∧ eσFb̂ĉw⃗
ĉ +

1

2
F âĉ w⃗

ĉ ∧ σ,b̂w⃗
ψ̂ +

1

4
e2σF âĉ w⃗

ĉ ∧ Fb̂âw⃗
d̂ (9.43)

This long expression gives the curvature 2 form. Now we need to identify the parts that are
needed for the Ricci scalar. The Ricci scalar only depends on the {0, 1, 2, 3} indices therefore we
can ignore any terms with ψ in them:

Râ
b̂ĉd̂

= Râ0 b̂ĉd̂ +
1

4
e2σ[F âĉ F )b̂â− F â

d̂
Fb̂ĉ + 2F â

b̂
Fĉd̂] (9.44)

The other curvature two form that contributes is:
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Rψ̂â = d⃗θ⃗ψ̂â + θ⃗ψ̂
b̂
∧ θ⃗b̂â

= σ,âb̂w⃗
b̂ ∧ w⃗ψ̂ + σ,â[σ,bw⃗

b̂ ∧ w⃗ψ̂ + eσF ]

+
1

2
eσ[σ,b̂w⃗

b̂ ∧ Fâĉw⃗ĉ + Fâb̂,ĉw⃗
ĉ ∧ w⃗b̂ − Fâb̂θ⃗

b̂
ĉw⃗

ĉ]

+ σ,b̂w⃗
ψ̂ ∧ [θ⃗b̂â +

1

2
eσF b̂âw⃗

ψ̂]

+
1

2
eσFb̂ĉw⃗

ĉ ∧ [θ⃗b̂0â +
1

2
eσF b̂âw⃗

ψ̂] (9.45)

Again we only take terms that will contribute to the Rψ̂
âψ̂b̂

, thus we need terms which has one

4D index and one 5D index (which is ψ), i.e we ignore all terms with purely space-time indices:

Rψ̂
âψ̂b̂

= −σ,âb̂ − σ,âσ,b̂ + σ,ĉΓ
ĉ
b̂â

− 1

4
e2σFâĉF

ĉ
b̂

(9.46)

Therefore:

Rψ̂
ψ̂

= −�σ − (∇σ)2 − 1

4
e2σF 2

Rab = R0ab −∇a∇bσ −∇aσ∇bσ +
1

2
e2σFacF

c
b

Rs = R0 +
1

4
e2σF 2 − 2�σ − 2(∇σ)2 (9.47)

So the 5D Ricci scalar is the 4D Ricci scalar plus an F 2 terms and then some scalar terms. If
we look at Einstein’s action and look at the last component, det(g5):

det(g5) = e2σdet(gψ) (9.48)

Therefore the 5 dimensional Einstein action, S5 becomes:

S5 = − 1

16πG5

∫
d5x

√
g5R5

= − 1

16πG5

∫
d4x

√
g4dψe

σ

(
R0 +

1

4
e2σF 2 − 2e−σ�eσ

)
= − L

16πG5

∫
d5x

√
g4e

σ

[
R4 +

1

4
e2σR2

]
(9.49)

where in the 2nd line we have integrated over ψ, which is just a constant, L (Periodicity
of ψ). So we seem to have reduced the Einstein action in 5D, to an action in 4D which looks
almost exactly like the Einstein-Maxwell action. In fact, if σ is fixed, this Einstein-Maxwell
action. Finally, we can conformally transform this action into the Einstein frame, by the following
coordinate transformations:

gµν ≡ e−σ g̃µν ϕ ≡ σ

3
(9.50)

Which gives the action:

S =
L

8πG5

∫
d4x
√
g̃

(
−R̃+

1

2
(∂ϕ)2 − e

√
3ϕ

4
F 2

)
(9.51)

and the metric is:

ds2 = e−
√
3ϕg̃µνdx

µdxν − e2
√
3ϕ [dψ +Aµdx

µ]
2

(9.52)
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The main problem with this theory (in fact with all higher dimensional theories) is that, when
we apply this to the whole universe, the expansion of the universe would also expand the smaller
dimension, which would make it visible after a ”sufficiently” large amount of time. The fact that
we do not observe these dimensions today, means they must have been even smaller in the past,
leading to another fine tuning problem.

3. Black holes in Kaluza Klein theory

Kaluza-Klein (KK) black holes are vacuum solutions of standard Einstein gravity. Since the
extra dimension, ψ, in KK is expected to be small, ∂

∂ψ is a Killing vector. One of the solutions is

the Schwarzschild like solution in 5D:

ds2 =
(
1− r+

r

)
dt2 −

(
1− r+

r

)−1

dr2 − r2dΩ2
2 − dψ2 (9.53)

This is called a black string, as it the Schwarzschild solution in 4D, extended along the ψ
direction.

Figure 51. Black string with a 4D boundary represented by the Schwarzschild
solution and an extra smooth direction ψ added on to the metric

This the simplest example of a KK black hole. To make it more general, firstly, one can
introduce cross terms in the metric. This can be done via Lorentz boosting the black string,
however, at first sight one would think that a Lorentz transformation should leave the metric
unchanged. This is because once ψ is fixed, it is periodic as stated before and therefore fixes a
rest frame.

Figure 52. Lorentz boost of the black string in the ψ dimension, with L being
the periodicity of ψ.

L is the periodicity of ψ:
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ψ = ψ + L (at constant t, x, y, z) (9.54)

Hence doing a Lorentz transformation means one has to start identifying coordinates at dif-
ferent points, ψ′ and t′:

t′ = γ(t− vψ)

ψ′ = γ(ψ − vt) (9.55)

Therefore:

(t′, ψ′) ≈ (t′ − vγL, ψ′ + γL) (9.56)

Which means there is a difference between between identifying ψ′ and then boosting or boost-
ing first and then identifying ψ′. By making a boost, the ψ and t directions are mixed therefore
the motion in ψ gives a gtψ term which one can related to At, a charge. Let’s see this explicitly:

ds2 =
(
1− r+

r

) (dt+ vdψ)2

1− v2
− (dψ + vdt)2

1− v2
−
(
1− r+

r

)−1

dr2 − r2dΩ2
2

= −
(
1− r + v2

(1 + v2)r

)(
dψ +

r + vdt

(1− v2)r + rsV 2

)2

+

(
1− r+

(1− v)r + r+v2

)
dt2 −

(
1− r+

r

)−1

dr2 − r2dΩ2
2

(9.57)

Shifting the origin the radial coordinate:

ĥ = r +
r + v2

1− v2
(9.58)

Identify charge:

q =
r+v

1− v2
(9.59)

which gives:

A =
q

r̂
dt (9.60)

which is a familiar looking potential and the scalar field:

e2
√
3ϕ =

r̂

r̂ − vq
=
r̂

r
(9.61)

The metric then, in the Einstein frame is:

ds24 =

(
1− rs

(1− v2)r̂

)(
1− V q

r̂

)− 1
2

dt2 −
(
1− r̂s

r̂

)−1(
1− V q

r̂

) 1
2

dr̂2 −
(
1− V q

r̂

) 1
2

r2dΩ2
2

(9.62)

If we take the extremal limit:

r̂+ → 0, v → 1, r̂s = fixed (9.63)

Which gives:

q = r̂+

(
1− vq

r2

)
→
(
1− r̂+

r

)
(9.64)

which has a null singularity at r̂s.
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3.1. Magnetic Kaluza-Klein black hole. One of the curious things in 4D, is that aswell
as having an electrically charged black hole, one can also get a magnetically charged black hole.
Which means that:

F ≈ Q sin θd⃗θ ∧ d⃗ϕ (9.65)

Which basically means one has a radial magnetic field. It has the same stress-energy tensor
as an electrically charged black hole:

A =
Q

r
d⃗t (9.66)

Which means the same geometry, since the magnetic field is the dual of F ; the geometry for
F and its dual is the same. Therefore there is a duality between electric and magnetic charges.
For KK theory we want the same F , which means we need to construct a gauge potential:

A = Q(±1− cos θ)θ⃗ (9.67)

This may not be obvious as naively one would just expect it to be something that goes as
− cos θ. But this term is part of a metric and in a metric, any singularities are actually coordinate
singularities. Normally one does not worry about singularities in polar coordinates on the north
and south pole, as they are relatively straight forward to remove via coordinate transformations.

In this case, there is a term gψϕ and therefore A must be regular at north and south poles,
which in the reason behind adding the ±1 part. These different signs actually give rise to two
distinct gauge fields, one that works on the north pole and are that works on the south pole:

ds2 =

(
r − r+
r − r−

)
︸ ︷︷ ︸

Tα

dt2 − dr2(
1− r+

r

) − r(r − r−)dΩ
2
2 −

(
1− r−

r

)dψ +
√
r+r−(1− cos)︸ ︷︷ ︸

T1

dϕ


2

(9.68)

This is what the 5D metric looks like and this is regular at the north pole, and the south pole
cannot be included in this. Instead, for the south pole:

As = −Q(1 + cos θ)dϕ (9.69)

This is a coordinate transformation:

ψS = ψN + 2Qϕ (9.70)

Therefore shifting the ψ angle between the North and South patches by 2Qϕ, then the 1 → −1
in T1 is taken care off. The periodicity of ψ implies:

4πQ = nL (n ∈ Z) (9.71)

This is giving a very striking result. It is saying that this solution only works if the magnetic
charge is quantised. Or in other words, if there exists quantised magnetic charges, L, can only
take quantised values and L is related to electric charge of fields, therefore the existence of a single
magnetic monopole means electric charge is quantised.

3.2. Extremal limit, r+ = r−. In this limit Tα in Eq 9.68 becomes zero, therefore there is
no potential in front of the time components of the metric. If we set:

Q = r+ =
L

4π
(i.en = 1) (9.72)

and redefine the extra dimension:



4. PERTURBATION THEORY 169

χ =
4πψ

L
(9.73)

therefore the periodicity of χ is 4π:

ds2 = dt2 − dr2

1− r+
r

−
(
1− r+

r

)
[r2dΩ2 + 2 + r2+(dχ(1 + cos θ)dϕ)2 (9.74)

It appears that there is a singularity as r → r+. Define a new radial coordinate:

ρ2 = 4r+(r − r+) (9.75)

Now as r → r+:

ds2 = dt2 − dρ2 − ρ2

4

[
dΩ2

2 + (dχ+ (1− cos θ)dρ)2
]

(9.76)

where dΩ2
3 is the distance element in a unit 3 sphere in Euler angle.

ρ2 → 0 is the origin of R4. The KK monopole is topologically R5, smooth. As we go to
r → 0, the θ, ϕ directions grow, whereas the χ remains fixed as it is independent of r. Therefore
it really looks like a KK solution at large r, as the usual 3 + 1 dimensions increases in size and
the 1 remaining dimension does not grow and hence is not observable (of course, here we have to
assume that the dimension is small in the beginning, relative to the size of the other dimension
today). The patching of coordinates between the north and south pole is known as Hopf fibration
of S4 over S2 giving S3 (discovered by Gross-Perry-Sordin).

This concludes the pure KK solution. We have seen that adding in extra dimensions not not
gives rise to black holes, it also gives Black strings, black branes etc. An example of a Higher
dimensional black hole is:

ds2 =

(
1− r+

r

D−3
)
dt2 − dr2(

1−
( r+
r

)D−3
) − r2dΩ2

D−2 (9.77)

D is the dimension of the overall manifold. This is just the Schwarzschild solution in higher
dimensions. All we see is that the potential just changes its form. These black holes have a mass:

16πGDM = (D − 2)AD−2r
D−3
+ (9.78)

A is the area of corresponding to a surface of radius ρD−2. Similarly, there exist objects called
Black branes, described by the metric:

ds2 = ds2p+1︸ ︷︷ ︸
T1

− dxidxjδij︸ ︷︷ ︸
T2

T1 = black hole in (p+1) dimension

T2 = more dimensions added to the black hole metric (9.79)

Here we are simply taking the Black hole solution in (p+1) dimensions and then adding extra
dimensions. It is interesting to see what charges these branes can carry. To find charged brane
solutions, one has to have form fields Bµν , Cµνλ etc.

4. Perturbation theory

In 4D we think black holes are stable as they are observed in our universe. To check this
stability via general relativity, the solutions obtained analytically can be perturbed and then the
effects are analysed. If a solution is stable it will not change too much under the perturbation.
Consider a 5D black hole, with radius, r+ and compare it to to a black string.

Note that the entropy of the Black string has a factor of 1
L which means that as the length

increases with fixed mass, eventually the entropy of the black strings will drop below the entropy of
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5D Black hole Black string
Area 2π2r3+ 4πr2sL

Mass
3πr2+
8G5

rsL
2G5

Entropy 8
3

√
2πG5

3 M
3
2

4πM2G5

L

Table 7. Comparison of black hole and black string

black holes. Thus if black holes thermo-dynamics is believed then as the compactification length,
L, increases the entropy of the black string will decrease, which means the black strings would
prefer to organise its mass as a black hole. This can be seen by expressing the black string entropy
as a black hole entropy:

SBS = SBH

√
27πrs
16L

(9.80)

The important thing to notice here is the ration of rsL . Therefore there exists a critical length
for a string, above which the black hole is a preferred state. This indicates that a black string
will have a long wavelength instability. To check whether the instability is real, one needs to
understand how perturbation theory works in gravity. Not only is perturbation theory useful to
check stability, it is also useful because it is hard to find exact solutions to Einstein’s field equations
therefore once a solution has been found, we can perturb it and see what the equations give. The
idea behind perturbation theory, is to take a metric gab and perturb it:

gab = goab︸︷︷︸
T1

+ hab︸︷︷︸
T2

T1 = Background known solution

T2 = Perturbation (9.81)

We only keep terms linear in h:

δT abc =
1

2
(gad0 − had)(g0db,c + hdb,c) (9.82)

We can choose normal coordinates, such that the connection is zero as all first order derivatives
of g are zero in normal coordinates (remember, it is the second order derivative that cannot be
set to zero, by a coordinate transformation) and therefore the partial derivative is the same as the
covariant derivative. In this case:

1

2
(gad0 − had)(g0db,c + hdb,c) =

1

2
(hadh0db,c)

=
1

2
(∇ch

a
b +∇bh

a
c −∇ahbc) (9.83)

But since this is a tensor equation, it must be the same in all coordinate systems:

δΓabc =
1

2
(∇ch

a
b +∇bh

a
c −∇ahbc) (9.84)

Therefore the perturbation of the Ricci tensor:

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac (9.85)

From the Palatini lemma we known how to compute the variation of this Ricci tensor:
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δRab =
1

2
∇c∇ah

c
b +

1

2
∇c∇bh

c
a −

1

2
∇c∇chab −

1

2
∇b∇ah︸ ︷︷ ︸
Tα

(9.86)

The first three terms come from T1 in Eq 9.85 by substituting Eq 9.84 into it. The final
terms is the covariant derivative of the trace of the perturbation in Eq 9.84. we can re-order the
derivatives using the Riemann identity:

δRab =
1

2
∇a∇ch

c
b +

1

2
Rcdcah

d
b +Rbdcah

cd

+
1

2
∇b∇ch

c
a +

1

2
Rcdcbh

d
a −

1

2
�hab −

1

2
∇b∇ah

= −1

2
(�hab + 2Racbdh

cd − 2Rd(ahb)d −∇(a∇dh̄b)d) (9.87)

where:

h̄bd ≡ hbd −
1

2
hg0bd

≡ −1

2
∇Lhab (9.88)

∇L ≡ �hab + 2Racbdh
cd − 2Rd(ahb)d −∇(a∇dh̄b)d (9.89)

This is called the Lichneronicz operator and its the curved space wave operator for a tensor
hAB . If the Einstein vacuum equations are true, then this term must be zero. There is a problem
with this formalism however, and that is to do with the meaning if hab being ”small”. As it cannot
be said that every component of hab is small, for example in the Schwarzschild solution, the metric
has no off diagonal elements, therefore any finite component of hab will be much greater than 0.
And hence the meaning of hab being small has to be evaluated from the context it is being applied
to. Also of the background metric has singularities any finite value of hab components will appear
”small” compared to ∞. For the flat space, Minkowski metric it is obvious what to do, since all
the components of ηab are 1 in magnitude, the condition on the perturbation is simply:

|hab| << 1 (9.90)

4.1. Gauge choices. As stressed before, coordinates are important in general relativity as
we are finding exact solutions and coordinates are chosen to make the solutions as simple as
possible. A gauge transformation can be written as:

xa → xa + ξa (9.91)

so we move a small distance ξa along a vector field:

gab → gab + Lξgab (9.92)

Lξgab is the Lie derivative of g along ξ, which is the symmetrised covariant derivative of ξ:

gab → gab + 2∇(aξb) (9.93)

Therefore if ξ was a killing vector, g, would not change. Define:

hξab ≡ ∇aξb +∇bξa (9.94)

So a coordinate transformation induces a perturbation in the metric, which was what makes
doing perturbation theory in gravity quite challenging. This can be used to fix a gauge to make
problems easier. From Eq 9.94:
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h̄ξab = �ξb +∇a∇bξa︸ ︷︷ ︸
T1

−∇b(∇ · ξ︸ ︷︷ ︸)T2 (9.95)

By swapping the order of differentiation in T1, we can cancel out T2, using the Riemann
identity:

∇a
¯hξab = �ξb +Rab ξa (9.96)

This is again a wave operator on a vector field, but corrected for the fact that the space is
curved. This gives a well posed set of differential equations:

�ξa +Rab ξ
b = V a(≡ ∇ah̄ξab) (9.97)

where V a has been introduce as a source, if the diverges of h̄ξab is non-zero. This means, we
can solve Eq 9.97 to obtain:

∇ah̄ξab ≡ ∇ah̄
ab = 0 (9.98)

A de Donder gauge is defined by:

δRab = −1

2

(
�hab + 2Racbdh

cd − 2Rc(ahb)c

)
(9.99)

We still have some gauge freedom:

xa → xa + χa (9.100)

such that:

�xa +Rabχ
b = 0 (9.101)

Let’s count the degrees of freedom:

hab =
D(D + 1)

2
Components

∇ah̄
ab = D Constraints

χa = D Constraints (9.102)

Therefore the total physical degrees of freedom are:

D(D + 1)

2
− 2D =

D(D − 3)

2
(9.103)

In 4D, there are 2 physical propagating degrees of freedom. Going back to the instability of
the black string. For perturbations, decompose with respect to symmetries of background metric.
The black string has a symmetry of rotations on a sphere (SO(3)), the killing vectors are ∂

∂t ,
∂
ψ .

This means the perturbation are written in terms of eiwt or ewt (for instability), and e
2πiµψ
L . In

principle the perturbations could have angular momentum. In general we can have:

• A scalar perturbation, hss.
• A vector perturbation, hsµ.
• A tensor perturbation, hµν .

The equations of motion for the scalar perturbation hss:

∇Lhss = (�4 + µ2)hss

= −V h′′ss −
2(r −GM)

r2
h′ss +

(
µ2 +

Ω2

V

)
hss = 0 (9.104)

where:
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V ≡ 1− 2GM

r
(9.105)

µ2 is like the Fourier mode for the extra dimension. As:

r → ∞ → hss ∝ e±
√

Ω2+µ2r

r → 2GM → hss ∝ (r − 2GM)2GMΩ (9.106)

In this case the scalar mode goes to zero at both r → 2GM and r → ∞ as hss → 0. Therefore
there has to be a turning point from one solution to the other. From Eq 9.104, at a turning point,
h′′ is positive if h is positive, therefore one has a minimum. If h′′ is negative, h is negative and
we have a maximum. However if h goes from 0 to 0, one has to have a maximum, which is a
contradiction to the equation of motion in Eq 9.104. Therefore there cannot be an instability in
the scalar mode.

The vector mode gives a similar expression. Looking at the tensor mode:

hµν = eΩteiµz


htt htr 0
htr hrr

0 K 0
0 K sin2 θ

 (9.107)

This does not depend on any angles. Again one has to use the gauge conditions:

∇ah̄
ab = 0 (9.108)

This can be used to re-express all of these components as a single function:

h(r)eΩteiµz (9.109)

Then one has to check the issue about regularity and weather h remains small. It turns out
that there is a particular function of Ω = Ω(µ), where µ is the wave-number and satisfies:

µ < O
(

1

GM

)
(9.110)

In other words, when the length is bigger then rs. The horizon of the black string wobbles:

Figure 53. Wobble of black string
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This method of perturbation theory cannot be used to see what happens beyond the linear
regime. It is simply hinting that it appears large for large L(< ′(GM)).

5. Interpreting metrics

Consider four observers; A, I,A+, D:

Figure 54. Observes A, I are in an accelerating frame in a rocket, and observers
A+, D are on a spherically mass, like the earth, and D is on a higher surface then
A+.

The gravitational field of the earth describes a Schwarzschild metric. The world line of an
accelerating observer can be parametrised by:

xµ =

(
1

a
sinh aτ,

1

a
cosh aτ, 0, 0

)
(9.111)

in flat space (i.e the coordinates are Cartesian). From Eq 9.111 it follows:

ẋµ = (cosh aτ, sinh aτ, 0, 0)

ẍµ = a2xµ (9.112)

The absolute value of the acceleration is a (as there is an 1
a in xµ). Therefore this is indeed a

uniformly accelerating observer.

Figure 55. Space-time diagram for accelerating frame.
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After a given amount of time the observer on the world line above will not be able to commu-
nicate with inertial observers as the world line will asymptotically approach the null ray. Now we
can change to coordinates that are centered on the observers:

t = ρ sinh (aτ)

x = ρ cosh (aτ)

dt2 − dx2 = a2ρ2dτ2 − dρ2 (9.113)

when ρ → 0, gtt → 0 and we get something like a horizon. The observer is at ρ = 1
a , in

this coordinate system and this agrees with the definition of xµ. ρ represents the distance of an
observer accelerating at a constant rate. Suppose we center the coordinate system on observer A,
we assume I is at a constant distance from A, which would represent a constant ρ.

If I is at a constant distance, then its acceleration is 1
a−1+d or a

1+ad , where d is the distance
between A and I.

Figure 56. Space-time diagram for two accelerating frames. The region marked
by blue line represents where I and A are in causal constant

Since I is accelerating at the same rate A, I will also have his our horizon, and eventually I
and A will go out of causal constant. Now lets look at A+&D, the coordinates for A+:

xµA = (t, re, 0)

ẋµA = (ṫ, 0)

ṫ = V
− 1

2
re =

(
1− 2GM

re

)− 1
2

(9.114)

The second derivative can be written as:

ẍµA = ȦνA∇µẋ
µ

=
∂

∂τ
ẋµA + Γµνλẋ

ν
aẋ

λ
µ (9.115)

since ẋ is a constant, T1 is zero and:

Γµνλẋ
ν
aẋ

λ
µ = ΓrttV

−1
e δµr =

GM

r2e
(9.116)

For observer D, that is a distance d away from the surface of the planet:
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ẍµD ≈ GM

(rE + d)2

=
GM

r2E

(
1− 2d

rE

)
≈ 10−6d metres (9.117)

This shows that the observers separated by a distance feel different accelerations.

5.1. Acceleration and gravity. Here we will look at frames that are accelerating but no
longer in flat space, but in curved space-time. Let’s start with the metric:

ds2 =
1

A2(xy)2

[
f(y)∂τ2 − ∂y2

f(y)
− ∂x2

g(x)
− g(x)dϕ2

]
f(y) = −1 + y2 − 2GMAy3

g(x) = 1− x2 − 2GMAx3 (9.118)

This metric does not look familiar. First thing to notice; there are two killing vectors, ∂
∂t ,

∂
∂ψ .

Let’s take ψ to be a periodic coordinate aswell. Next thing to check is the ranges over which these
coordinates are defined. For the metric to be Minkowski, like in the signature, f and g must be
positive.

Figure 57. Form of g(x)

g(x) is a cubic, therefore can have 3 roots. If 2GM is small, then the roots will be close to
±1. If GMA = 0, x = cos θ, which gives dΩ2

2 for x, ψ part of the metric, therefore we can take x
to be between B and C:

x ∈ [B,C] (9.119)

Similarly:

f(y) ≥ 0 → y ∈ [−B,−A] (9.120)

if 2GMA << 1, then root −A is roughly:

−A ≈ 1

2GMA
(9.121)

So the y coordinate looks like it has a limit, roughly 1 or 1
2GMA . This looks like an event horizon

and if r = 2GM is an event horizon, then it suggests that we try a coordinate transformation:

r ≡ 1

Ay
⇒ dr = − 1

Ay2
dy (9.122)
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Then the root looks like r ≈ 2GM , of course these are all orders of magnitude calculation for
the roots of the cubic. With this transformation, f(g) becomes:

f(y) = −1 +
1

A2r2
− 2GM

Ar2

=
1

A2r2

(
1−A2r2 − 2GM

r

)
(9.123)

and the metric is:

ds2 =
1

(1 +Arx)2

[(
1− 2GM

r
−A2r2

)
∂t2

A2
− dr2(

r − 2GM
r −A2r2

) − (same terms as before)

]
(9.124)

Comparing to the Schwarzschild, de Sitter black holes, this metric looks familiar, with A being
a potential. But the solution we write down was a solution to the Einstein vacuum equations,
therefore there was no cosmological constant in there, Eq ??, has two horizons:

r1 ≈ 2GM → Black hole

r2 ≈ 1

A
→ Acceleration horizon (9.125)

Going back to the x and ψ coordinates. When x = cos θ, this looks roughly like a sphere not
exactly. Again we have two coordinate singularities. One is close to x = 1, and the other is close
to x = −1. If this were a sphere and we didn’t have this GMA terms of the g(x) function, we
would say x = cos θ and not worry about the north pole and south pole singularities, as they are
easy to remove. Here we have a north pole and a south pole, but because the metric function has
been changed, one cannot assume that the singularities at the north and south pole are the same
as they would be with any other sphere. So one has to examine:

x → B (south pole)

x → C (north pole) (9.126)

In each case, we have to check that the metric is regular. Near x = B:

g(x) ≈ g′(B)(x−B) (9.127)

where g′ is the gradient of g. Defining:

θB ≡ 2

√
x−B

g′B

dθ2B ≡ dx2

g′B(x− xB)
≈ ∂x2

g(x)
(9.128)

So we have re-defined a coordinate that looks like a radius. This looks like the usual south
pole, but only if ψ has correct periodicity. Near the south pole, θB :

g(x)dψ2 ≈ g′B(x−B)dψ2 = g′2B
θ2B
4
dψ2 (9.129)

To identify a ϕB angle:

ϕB =
|g′B |
2
ψ (9.130)

ϕB would have periodicity 2π. If we look at g′:

g′ = −2x− 6GMAx2 (9.131)
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Looking at the g′ at both roots:

|g′B| ̸= |g′C | ⇒ 2− 6GMA ̸= 2 + 6GMA (9.132)

In other words, if the periodicity is chosen in the ψ coordinate such that it is regular at one
pole, then it is not regular at the other pole. This tells us that the periodicity is not exactly
2π, instead this is a conical singularity. A canonical singularity can be imagined by imagining a
sheet of paper, cutting out a wedge and fold it up to form a cone. The key feature of a conical
singularity is that the constant r is not 2πr, this can be seen them the metric as it has a (1− δ)
factor multiplying the r2 term. There exists a physical solution that gives a canonical singularity
(at large scales):

Figure 58. Conical singularity on black string

The singularity at point O is smoothed out over large distances, This is object is known as a
cosmic string. This has many singularities with the domain wall. A cosmic string forms when the
vacuum has non-trivial U(1) or circle. This arises in the abelian Higgs model. This solution has
feature of a black hole, and acceleration and these conical singularities on one side (i.e south or
north pole).

So this metric actually represents a black hole that is accelerating of to infinity, and it is pulled
by a cosmic string. Just like the domain wall, cosmic strings also have a stress energy tensor
that is proportional to the induced metric on this string world sheet. Therefore the string has
a very strong tension, so the interpretation is that it is this tension of the cosmic string that is
accelerating this black hole. As shown in Eq 9.132, the difference in the metric at both points is
of order GMA, therefore the greater the mass of the black hole, the greater the canonical deficit,
and the greater the acceleration, A, the greater the deficit. Which is just saying that if the tension
in the string is bigger, then the acceleration is bigger. If the black hole is heavier, then it will take
more effort to pull the black hole of the same acceleration, which again gives the bigger difference
between the metrics, so this picture is actually quite intuitive when thought about psychically.
This metric is called a C-metric.

6. Gravitational instantons

Several quantum affects in general relativity have been discussed so far, however the underly-
ing frame work or field theory has always been classical. Here we discuss the process of tunneling
of the space-itself. This was first discussed by Sidney Coleman[10] and then Frank de Luccia[9]
and it is the same method that is followed here.

An instanton is an event centered on an instant in time, but this time is Euclidean time. Re-
call the tunneling in QM; as long as V0 <∞, the incoming wave with energy E will be able to go
through the potential, even if E < V0, with a finite probability:
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|T |2 =
1

1 + sinh2 Ωd
4E(V0−E)

≈ e−2Ωd

Ω2 =
2M(V0 − E)

~2

Ωd =
1

~

∫ d

0

√
2m(V − E0)dx (9.133)

Figure 59. Quantum mechanical tunneling

Ωd is like the volume of the barrier. This can be compared to a classical particle moving in a
well:

Figure 60. Classical motion in potential well

The motion in this classical potential well would be described by:

ẋ2

2
= ∆V∫ √

2∆V dx =

∫
2∆V dτ

=

∫ (
∆V +

1

2
ẋ2
)
dτ (9.134)

Therefore by comparing Eq 9.133 and Eq 9.134, the same equations seems to describe the
motion of a classical particle in a well and a quantum particle in a well and a quantum particle in
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a barrier. Generally to compute a tunneling amplitude, we take classical path of particle moving
in an inverted potential. The idea is that in computing the equations of motion of a tunneling
process, one is analytically continuing to Euclidean time and then calculating a classical problem.
The tunneling amplitude is given by:

e−SB~ (9.135)

where SB is the Euclidean action of this ”bounce solution”. A particle, calculation tunneling
amplitude is quite simple, but in field theory, the easiest way of computing is to look at the Eu-
clidean equation of motion, calculate the classical bounce problem and its corresponding Euclidean
action and then we can obtain the tunneling amplitude from Eq 9.135.

6.1. False vacuum decay. The Lagrangian of a field, ϕ, with a false vacuum is:

Lϕ =
1

2
(∂ϕ)2 − V (ϕ) (9.136)

where ϕ is described by the potential.

Figure 61. False vacuum potential

The potential is:

V (ϕ) =
λ

2
(ϕ2 − η2)2 − ϵ(ϕ− η)

2η
(9.137)

The −η has a ”false vacuum” state as the potential is not actually a minimum:

ϕ = −η ≡ False vacuum , V ≈ ϵ

ϕ = +η ≡ True vacuum , V ≈ 0 (9.138)

If we are in the false vacuum, then in quantum mechanics the wavefunctions would be affected
by the true vacuum at ϕ = +η and therefore it is possible to tunnel through to the true vacuum.
In this situation the False vacuum state is metastable (i.e it is stable to small perturbations),
however a tunneling process might take it into the true vacuum.

Now we look for a Euclidean time (t→ iτ) solution:

∂2ϕ

∂τ2
+∇2ϕ =

∂V

∂ϕ
= 2λϕ(ϕ2 − η2) +O(ϵ) (9.139)

Asymptotically, the idea of a bounce means we have to imagine that the background state is
going to be a false vacuum (FV), but there should be a true vacuum (TV), solution in the false
vacuum.
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In other words, if we go along from left to right in the schematic solution in Figure 62, we
go from the false vacuum, to true vacuum, to false vacuum. In the solution, spherical symmetry
is expected, which means we can go from a 4D partial differential equation to a 1D ordinary
differential equation:

ϕ′′ +
3

ρ
ϕ′ = 2λϕ(ϕ2 − η2)

ρ2 ≡ τ2 + x⃗2 (9.140)

Figure 62. Solutions to equations of motion in terms of Euclidean time

The potential has a small energy difference, ϵ, between vacuum solutions, relative to the size
of the barrier. Therefore one might expect that ϕ is roughly constant inside the true vacuum and
false vacuum and goes through the potential barrier between the true and false vacuum quickly
in some region. This is like a thin wall problem. Suppose ϕ varies rapidly in a thin region of ρ,
centered on ρ >> 1√

λη
. This gives the same solution as the domain wall:

ϕ ≈ η tanh (
√
λη(ρ− ρ0)) (9.141)

As long as we are not in the limit
√
λη is large, ϕ is essentially constant and the only deviation

is around ρ ≈ ρ0. The action for this solution is:

SB = 2π2ρ30σ︸ ︷︷ ︸
Wall action

− π2ϵρ40
3︸ ︷︷ ︸

Action inside true vacuum

(9.142)

σ is the energy per unit area. If ρ is a solution to the equations of motion, then ρ0 will be a
stationary point of the action, i.e:

∂SB
∂ρ0

≡ 0 (9.143)

which gives:

2π2ρ20(3σ − ϵρ0) = 0 ⇒ ρ0
3σ

ϵ
(9.144)

Substitute this into Eq 9.142:

SB =
27σ4π2

2ϵ3
(9.145)

This is the bounce action. Since we assumed that ϵ is a lot smaller than the overall potential
scale, which is represented by σ, the value of ρ, will always be greater than 1:
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ρ0 >> 1 (9.146)

hence that assumption that everything happens near ρ0 is a good one (as the tanh function
will then start to move away from a constant value in Eq 9.141). Therefore in Figure 62, we have
constructed a bubble of the true vacuum in Euclidean space, R4, which sits at some fixed ρ0. So
we have a true vacuum for ρ < ρ0 a wall at ρ0, and a fixed vacuum at ρ > ρ0. We can now
continue analytically. Recall:

ρ2 = τ2 + x⃗2 ≡ ρ20(At wall) (9.147)

which is, in terms of Lorentzian (i.e non-Euclidean) time:

ρ2 = −t2 + x⃗2 ≡ ρ20(At wall) (9.148)

Which is a hyperboloid in Lorentzian flat space:

Figure 63. Hyperboloid in Lorentzian flat space

The tunneling process can be thought of as a Euclidean bubble forming in the past and then
expanding into a Lorentzian space at a given time. To match the solutions of the Euclidean
space and the Lorentzian space, the surface needs to be mapped to a surface which has no time
derivatives (as the real and imaginary parts can only equal each other if the solution is trivial).
In the false vacuum state, the energy momentum tensor is:

Tµν = ϕ,µϕ,ν − Lgµν

= V gµν

= ϵgµν (9.149)

Therefore the false vacuum is not flat (as there is a cosmological constant), instead it is a
de-Sitter space-time, and the length scale, L, is:

L2 =
3

Λ
=

3

8πGϵ
(9.150)

where the 8πG has been put in to obtain the correct units. If ϵ is small, the length scale of
the de-Sitter space time is big, thus the metric is nearly flat, however the geometry is not exactly
flat and that needs to be accounted for, should one require a consistent solution. Gravitationally,
we need to replace the hyperboloid with dS. Now we can use the Gauss-Cadazzi formalism, for
inside the bubble and outside.

• Inside, the metric is:

ds2 = ∂ρ2 + ρ2∂Ω2
3 (9.151)
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Wall at ρ0, and an outward normal is ∂
∂ρ . Therefore from the Israel equations, the

extrinsic curvature is:

K−
αβ = −Γραβ (α, β ∈ {1, 2, 3} on S2) (9.152)

• Outside, we have Euclidean de-Sitter space:

ds2 = (∂χ2 + sin2 χ∂Ω2
3)L

2 (9.153)

This is a 4 sphere of radius, L. Where:

L =
3

8πGϵ
(9.154)

Therefore in this metric, the wall is at χ0 and here we need an inward normal (as
we are looking into the true vacuum, Minkowski space), so the inward normal is:

1

L

∂

∂χ
(9.155)

and:

K+
αβ = −Γχα0

L
=

cotχ0

L
gαβ (9.156)

Combining the two solutions for inside and outside solutions, the intrinsic/induced metrics
must be the same on each side, therefore equating Eq 9.151 and Eq 9.153:

ρ0 = L sinχ0 (9.157)

By equating the metrics at the wall. From the Israel equation, Eq 8.124:

cotχ0

L︸ ︷︷ ︸
K+
αβ

− cscχ0

L︸ ︷︷ ︸
K−αβ

= −4πGσ (9.158)

Which can be re-written as:

4πGσL =
(1− cosχ0)

sinχ0
(9.159)

So we get a relation between the tension of the wall, σ, the curvature of the de-Sitter space
and the place at which the two different metrics are being identified. The next step is to calculate
the action of the Euclidean solution:

SE = −
∫
M+

(R+ 2Λ)−
∫
M−

(R+ 2Λ) +

∫
∂M+

K+

8πG
−
∫
∂M−

K−

8πG
+

∫
Wall

σ (9.160)

This is the full action, but we also have to subtract off what was already present:

Sb =

∫
M−

− (R+ 2Λ)

16πG
+

∫
Wall

(
∆K

8πG
+ σ

)
(9.161)

For the de-Sitter space:

R = −4πΛ (9.162)

where:

Λ = 8πGϵ (9.163)

. From the Israel equation, ∆K = −12πHσ:
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SB = 2ϵπL4

∫ χ0

0

sin3 χdχ

= −σ
2
2π2ρ30 (9.164)

Replace ϵ in terms of L:

SB =
3π

4G
L2

[
1

3
cos3 χ0 − cosχ0 +

2

3

]
− π2L3 sin3 χ0

(1− cosχ0)

(sinχ0)4πGL

=
πL2

4G
(1− cosχ0)

2 (9.165)

Which can be re-written as:

SB =
πL2(4πGσL)4

G(1 + (4πGσL)2)2
(9.166)

This is known as the Coleman-de Luccia result and its the action of a gravitational instanton
which goes from de-Sitter space to Minkowski space. It was this procedure of metastability of
false vacuum solution that first led Alan Guth to propose the inflationary model.



Part 3

Cosmology





CHAPTER 10

Metrics of the cosmos

Cosmology is arguably the broadest subject one can have, as it is about the universe as a
whole. It brings together all other disciplines of physics to describe phenomena, from stars to
black holes to the cosmic microwave background and the Big bang itself.

1. The important metrics

There are three metrics that are very useful in cosmology:

• Maximally symmetric metrics:

En = n dimensional Euclidean space

Sn = n dimensional sphere

Hn = n dimensional hyperbolic space

dSn = n dimensional de-Sitter space

Mn = n dimensional Minkowski space

AdSn = n dimensional Anti-de-Sitter space (10.1)

All of these spaces are actually related to each other.
• The Friedmann-Robertson-Walker, FRW, metric. As far as we can observe, the universe

at large scales appears to be described by this metric. In this metric, every 3D slice of
this space, is one of the maximally symmetric spaces, which can be scaled in an arbitrary
way (usually as time evolves).

• Black hole metrics, there are two very important ones; the Schwarzschild metric for a
non-rotating black hole and the Kerr metric, which describes a rotating black hole.

1.1. n dimensional sphere metric. To begin with, let’s construct the metric for an n
dimensional sphere. When we imagine a 2D sphere, it is embedded in a flat 3D space. More
generally when we want to construct the n dimensional sphere, it is embedded in a n+1 dimensional
space. Consider:

xA (A = dim(n+ 1)) (10.2)

In general (for this subsection), capital indices will run over n+1 dimensions, i.e the dimension
of the embedding space. Lower case indices run over n dimensions, i.e the dimension of the
manifold. The metric of the embedding space is just a flat Euclidean, n+ 1 dimensional space:

ds2 = δABdx
AdxB

= δabdx
adxb + (dxn+1)2 (10.3)

Now we consider, a surface defined by an equation:

ρ2 = δABx
AxB

= δabx
axb + (xn+1)2 (10.4)

Now, we can solve for (xn+1) in this expansion:

187



188 10. METRICS OF THE COSMOS

xn+1 = ±(ρ2 − δabx
axb)

1
2 (10.5)

Differentiating:

dxn+1 = ±1

2
(ρ2 − δabx

axb)
−1
2 (−2δabdx

adxb) (10.6)

Putting this into Eq 10.3:

ds2 =

(
δab +

xaxb
ρ2 − x2

)
dxadxb (10.7)

where:

x2 ≡ δabx
axb

xa ≡ δabx
b

xb ≡ δabx
a (10.8)

This is the metric for the n sphere.

1.2. Constructing a general metric. Now we want to construct an n dimensional manifold
with a general signature (p, q), i.e p is a spatial direction and q is a time direction. The curvature,
K, can be:

K = +1, 0,−1 (10.9)

and the radius of curvature is ρ. Again, let’s take a flat n+ 1 dimensional embedding space:

ds2 = η
(p,q)
ab dxadxb +K(dxn+1)2 (10.10)

where η
(p,q)
ab is the flat Minkowski metric with signature (p, q). We also take the same embed-

ding equation:

Kρ2 = η
(p,q)
a,b xaxb +K(xn+1)2 (10.11)

Now the same procedure used for the sphere is used; eliminate xn+1 from the embedding
equation, differentiate it, put in into the metric of the embedding space, to get an n dimensional
line element:

ds2 =

(
η
(p,q)
ab +

Kxaxb
ρ2 −Kx2

)
dxadxb (10.12)

where:

x2 ≡ η
(p,q)
ab xaxb

xa ≡ η
(p,q)
ab xb

xb ≡ η
(p,q)
ba xa (10.13)

This is the metric for maximally symmetric space. A summary of the different spaces is given
below:

K = +1 K = 0 K = −1
Signature (n, 0) Sn En Hn

Signature (n− 1, 1) dSn Mn AdSn

Table 8. Comparison of different maximally symmetric metrics
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Maximally symmetric metrics have a signature (p, q) with q ≥ 2 (i.e two or more time-like
directions) are not observed in nature. These types of metrics would have some strange properties.
For example, they would have closed time-like curves, therefore it would be (theoretically) pos-
sible to travel back in time and this leads to the usual paradoxes, such as the grandfather paradox.

As in general relativity, an important object is the inverse of the metric tensor, as that provides
a mechanism for converting contravariant objects to covariant objects and vice-versa. Suppose

ηab(p,q) is the inverse of η
(p,q)
ab , then the inverse of g

(p,q)K
ab is

gab(p,q)K = ηab(p,q) −
Kxaxb

ρ2
(10.14)

This can be explicitly shown as follows.

Claim 20.
g
(p,q)K
ab gbc(p,q)K = δca (10.15)

Proof 20.

g
(p,q)K
ab gbc(p,q)K =

(
η
(p,q)
ab +K

xaxb
ρ2 −Kx2

)(
ηbc(p,q) −K

xbxc

ρ2

)
= η

(p,q)
ab ηbc(p,q) − ηp,qab K

xbxc

ρ2
+ ηbc(p,q)K

xaxb
ρ2 −Kx2

− K2xaxbx
bxc

ρ2(ρ2 −Kx2)

= δca −
Kxax

c

ρ2
+K

xax
c

ρ2 −Kx2
− K2xax

cx2

ρ2(ρ2 −Kx2)

= δca (10.16)

Next we calculate the Christoffel symbols.

Claim 21. The Christoffel symbols are

Γabc = K
xa

ρ2
g
(p,q)K
bc . (10.17)

Proof 21. The generic form of the Christoffel symbols is given in Eq 3.111. Computing the
terms individually

∂g
(p,q)K
bd

∂xc
=

∂

∂xc

(
η
(p,q)
bd +K

xbxd
ρ2 −Kx2

)
=

∂η
(p,q)
bd

∂xc
+

∂

∂xc

(
Kxbxd
ρ2 −Kx2

)
=

∂η
(p,q)
bd

∂xc
+

Kxd
ρ2 −Kx2

∂xb
∂xc

+
Kxb

ρ2 −Kx2
∂xd
∂xc

+Kxbxd
∂

∂xb

(
1

ρ2 −Kx2

)
,(10.18)

and similarly

∂g
(p,q)K
cd

∂xb
=
∂η

(p,q)
cd

∂xb
+

Kxd
ρ2 −Kx2

∂xc
∂xb

+
Kxc

ρ2 −Kx2
∂xd
∂xb

+Kxcxd
∂

∂xb

(
1

ρ2 −Kx2

)
, (10.19)

∂g
(p,q)K
bc

∂xd
=
∂η

(p,q)
bc

∂xd
+

Kxc
ρ2 −Kx2

∂xb
∂xd

+
Kxa

ρ2 −Kx2
∂xc
∂xd

+Kxbxc
∂

∂xd

(
1

ρ2 −Kx2

)
. (10.20)

Now use the identities; xa,b = δab , xa,b = η
(p,q)
ab , x2,a = 2xa, x

a, xa = x2 and substitute the
individual components into Eq 3.111 to get

Γabc = K
xa

ρ2
g
(p,q)K
bc . (10.21)
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Once we have the Christoffel symbols, its relatively straightforward to show the following
relations,

Rabcd =
K

ρ2
(δac g

(p,q)K
bd − δadg

(p,q)K
bc ) (10.22)

Rabcd =
K

ρ2
(g(p,q)Kac g

(p,q)K
bd − g

(p,q)K
ad g

(p,q)K
bc ) (10.23)

Rab =
(n− 1)K

ρ2
g
(p,q)K
ab (10.24)

R =
n(n− 1)K

ρ2
(10.25)

Note that these four equations are tensor equations, therefore they are completely general
and are valid in any coordinate system. The metrics in these equations are soutions to Einstein’s
equations in the vacuum, Gµν + Λgµν = 0, where

Λ =
K(n− 1)(n− 2)

2ρ2
(10.26)

2. FRW space-times

From the assumptions of isotropy and homogeneity, FRW space-times are symmetric in all
spatial directions, which means that all of the changes in this space can be encompassed in one
term, a(t), which is known as the scale factor. The (n+1) dimensional FRW metric can therefore
be written as

ds2 = gµνdx
µdxν = −dt2 + a(t)g

(n,0)K
ij dxidxj (10.27)

By a coordinate transformation of the form xi = ρx̃i and ρa(t) = ã(t), the ρ in g
(n,0)K
ij can be

set to 1. From Eq 10.14, we can find the inverse metric components

g00 = −1, g0i = 0, gij =
gij(n,0)K

a2(t)
. (10.28)

And the Christoffel symbols follow

Γ0
00 = Γi00 = Γ0

0i = 0

Γi0j = Hδij , Γ0
ij = Hgij , Γkij = Kxkg

(n,0)K
ij . (10.29)

The components of the Ricci tensor are

R00 = −nä
a
, R0i = 0, Rij =

(
ä

a
+ (n− 1)

(
H2 +

K

a2

))
gij . (10.30)

Finally the components of the Einstein tensor, Gµν = gµρRρν − 1
2δ
µ
νR, are

G00 =
n(n− 1)

2

(
H2 +

K

a2

)
(10.31)

G0i = 0 (10.32)

Gij = −(n− 1)

(
ä

a
+

(n− 2)

2

(
H2 +

K

a2

))
gij (10.33)

The stress-energy tensor in FRW space-time is that of an ideal fluid
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Tµν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0P

 , (10.34)

which can be written as

T00 = ρ, T0i = 0, Tij = pgij . (10.35)

Putting the ingredients back into the Einstein equations, Eq 4.43, gives two of the most
important equations in cosmology. First, is the Friedmann equation

H2 =
16GNρ+ 2Λ

n(n− 1)
− K

a2
, (10.36)

and the continuity equation,

ρ̇ = −nH(ρ+ P ) (10.37)

The continuity equation is obtained by the 00 component of the Einstein equation, and its
time derivative, to simplify the ii component. There is another (quicker) way to derive this relation
from the conservation of the stress-energy tensor, Tµν;ν = 0.

2.1. Standard coordinates for FRW space-time. Since the FRW universe is homogenous
and isotropic, the natural coordinates for the FRWmetric are the spherical polar coordinates under
which the line element becomes

ds2 = −dt2 + a2(t)

(
dr2

1−Kr
+ r2dΩ2

)
. (10.38)

It is conventional to define a new radial coordinate, χ, as r ≡ Sk(χ), where

SK(χ) =


sinχ (K = +1)

χ (K = 0)

sinhχ. (K = −1)

(10.39)

Now, the line element can be written as

ds2 = −dt2 + a2(t)(dχ2 + S2
K(χ)dΩ2). (10.40)

It is also conventional to define a conformal time, η as dt = adη. Sometimes the definition of
conformal time is given in integral form as

η(t)− η0 =

∫ t

t0

dt

a(t)
⇔ t(η)− t0 =

∫ η

η0

a(η)dη. (10.41)

In terms of this conformal time, the line element becomes

ds2 = a2(η)

(
−dη2 + dr2

1−Kr2
+ r2dΩ2

)
= a2(η)

(
−dη2 + dχ2 + S2

K(χ)dΩ2
)
. (10.42)

A word on notation; ȧ ≡ da
dt and a′ ≡ da

dη .
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2.2. Motion in FRW space-time. Now let’s see how free particles behave as they move
along the geodesics in FRW space-time. Let the geodesic, xµ(λ), followed by the particles, to be
defined by the affine parameter, λ. The tangent vectors to the geodesic is the 4-momentum, pµ,

pµ ≡ dxµ

d
. (10.43)

Therefore for a particle with mass m, λ is related to proper time τ by dτ = mdλ. The geodesic
equation, Eq 2.25, in terms of λ and the coefficients of affine connection (i.e the Christoffel symbols)
is

dpµ

dλ
+ Γµαβp

αpβ = 0. (10.44)

The µ = 0 component of the geodesic equation is

dp0

dλ
+HP 2 = 0, (10.45)

where, P ≡ (gijP
iP j)

1
2 , is the magnitude of the spatial momentum. Taking the differential

of the equation, m2 = −gµνPµP ν = (p0)2 −P 2 yields p0dp0 = PdP . This can be used to re-write
Eq 10.45 as

P

(
dP

dt

)
+HP 2 = 0. (10.46)

Which can be simply integrated to get

P ∝ 1

a
. (10.47)

This result applies to both massive and mass-less particles. First let’s consider massive parti-
cles. From Eq 10.47, if the particles are initially at rest, relative to the spatial coordinates, then
they will remain at rest. These are called co-moving observes. It is quite common to actually
define a coordinate system in which particles remain stationary with respect to the coordinate
system, such coordinate systems are called co-moving coordinates. Even if a massive particle ini-
tially has a large, non-vanishing 3-velocity relative to the co-moving coordinates (called its peculiar
velocity). Eq 10.47, shows that the cosmological expansion causes the particle to gradually come
to rest relative to them; an affect known as Hubble drag. Although the “coordinate distance”
or “co-moving distance” between any two co-moving observes remains constant with time; the
“physical distance” between grows ∝ a(t); this is what is meant by the expansion of the universe.

Coming to mass-less particles, even though a mass-less particle does not come to rest (it always
move at the speed of light), it feels a kind of Hubble drag through the relation; P = p0 = ~ω; that
is the energy and frequency decrease (from the de Broglie relation) and its wavelength stretches
as the universe expands. This phenomena is known as cosmological redshift. This effect had been
measured by Hubble before the full understanding of general relativity came about to describe it.

Now let’s analyse the horizon structure of these space-times. To get the basic idea, we can keep

things simple and consider a spatially flat FRW metric expanding as a(t) = a0

(
t
t0

)p
(0 < t <∞).

If we switch to conformal time η, this becomes

a(t) = a0

(
η

η0

) p
1−p

(10.48)

where 0 < η < ∞ if p < 1 (i.e if ä < 0, deceleration) and −∞ < η < 0 if p > 1 (i.e if ä > 0,
acceleration). First suppose, that at time, t∗ and conformal time η∗ = η(t∗) an observer emits a
photon from χ = 0. Let’s follow this photon’s trajectory forward in time. Firstly, a photon will
have a null trajectory, as ds2 = 0, and hence dη = dχ, so at a later time t > t∗(η > η∗) it will
have reached a co-moving radius χ(t) = η(t)− η∗. If we trace the photon all the way to t = ∞, it
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will reach a co-moving radius χ∞ = χ(t = ∞). Note that χ∞ is infinite for p < 1, and finite for
p > 1; we say that when p > 1, the observer is surrounded by a future horizon or event horizon- a
surface beyond which the observer cannot send signals (This is analogous to the role that a black
hole horizon plays for all observers inside the black hole).

Next suppose that at time t∗ and conformal time η∗ = η(t∗), an observer receives a photon
at χ = 0. Let’s follow the trajectory back in time. Again, it is traveling on an null trajectory,
therefore ds2 = 0 and hence dη = −dχ, so at an earlier time t < t∗(η < η∗) it was at a co-moving
radius χ(t) = η∗−η(t). If we trace the photon all the way back to t = 0, it came from a co-moving
radius χ0 = χ(t = 0). Note that χ0 is finite for p < 1, and infinite for p > 1: we say that when
p < 1, the observer is surrounded by a past horizon or a particle horizon, i.e the observer cannot
receive signals from beyond the surface (this is analogous to the role that the black hole plays for
all observers outside the black hole).

2.3. Motion of FRW space-times. The expansion history of a FRW space-time is deter-
mined by the amount and type of matter it consists of. To see this, first look at the Friedmann
equation

H2 =
8πG

3
ρ− K

a2
(10.49)

If ρ(t) is {equal to, greater then, less then} the instantaneous critical density, ρc

ρc ≡
3H2(t)

8πG
, (10.50)

at some time, then it will be {equal to, greater then, less then} the critical density at all times;
such a space-time has {K = 0,K = +1,K = −1} and is called a {flat, closed, open} universe.

To get a feel for how these types of universes behave, imagine a universe that contains only a
single matter component with a constant ratio, ω = p

ρ . This ω is often known as the equation of

state parameter. The continuity equation, Eq 5.41, integrates to give

ρ = ρ0

(
a

a0

)−3(1+ω)

. (10.51)

Putting this into the Friedmann equation Eq 10.49:

H2 =
8πGρ0

3

(
a

a0

)−3(1+ω)

− K

a2
. (10.52)

Let’s first consider what the different values of K mean. First suppose the universe is “flat”
(K=0), then H2 ≥ 0 implies ρ ≥ 0; we can integrate the Friedmann equation to find the evolution
of the scale factor;

a(t) = a0

(
t

t0

) 2
3(1+ω)

(K = 0, ω ̸= −1)

a(t) = a0 exp (H0(t− t0)) (K = 0, ω = −1), (10.53)

equivalent expression in terms of conformal times are;

a(η) = a0

(
η

η0

) 2
1+3ω

(
K = 0, ω ̸= −1

3

)
a(η) = a0 exp (a0H0(η − η0))

(
K = 0, ω = −1

3

)
. (10.54)

Such a universe either expands monotonically from a = 0 to a = ∞, or contracts monotoni-
cally from a = ∞ to a = 0. The age of the universe, t, is related to the instantaneous expansion
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rate H(t) by t = 2
3(1+ω)H(t) .

Next suppose the universe is “closed”, (K = +1), then H2 ≥ 0 implies ρ > 0 and, even more

strongly 8πGρ
3 ρ0

(
a
a0

)−3(1+ω)

≥ 1
a2 . For ω > −1

3 , this means the universe expands from a big

bang, (a=0), up to maximum size a = a∗, and then re-contracts to a big crunch (a=0); and for
ω > −1

3 , the universe contracts from a = ∞ to a minimum size a = a∗ and then re-expands to
a = ∞; in each case the extremal size a∗ is given by

a∗ = a0

(
8πG

3
ρ0a

2
0

) 1
1+3ω

. (10.55)

Finally, suppose the universe is “open” (K=-1), then H2 ≥ 0 does not imply ρ > 0; instead it
implies the weaker condition:

8πG

3
ρ0

(
a

a0

)−3(1+ω)

≥ − 1

a2
. (10.56)

If ρ > 0, this condition is never saturated, the universe expands monotonically from a = 0 to
a = ∞, or contracts monotonically from a = ∞ to a = 0, much like the K = 0 case. The only
difference is that the evolution is divided into an “early phase” and a “later phase” which have
different characters, because the RHS of the Friedmann equation is dominated by the 8πGρ

3 terms

in one phase, and the −K
a2 term in the other. The final possibility is ρ < 0; then for ω > − 1

3 ,
the universe contracts from a = ∞ to a minimum size a = a∗, and then re-expands to a = ∞
and for ω < − 1

3 the universe expands from a big bang (a = 0) to a maximum size a = am∗ and
then re-contracts to a big crunch (a = 0); the extremal size a∗ is given by Eq 10.55, with ρ0 → −ρ0.

In fact, the general solution for ω and arbitrary K = 0,+1,−1, may be found as follows; move
the −K

a2 to the left side of the Friedmann equation; divide both sides by 8πGρ
3 , so that the RHS

equals 1; now note that if we define Aã =
(
a
a0

) (1+3ω)
3

, where A =
√

8πGρa20/3 is a constant, the

equation becomes

1 =

(
1 + 3ω

2

)2

(ã′)2 +Kã2. (10.57)

The solution to this equation is

ã(η) = Sk

(
(1 + 3ω)η

2

)
, (10.58)

and hence1

a(η) = a0A
αSαK

( η
α

)
, (10.59)

where SK was defined before and α = 2
1+3ω . It used to be thought our universe contained

two types of matter; a gas a of relativistic particles with ω = 1
3 (“radiation”) and a gas of non-

relativistic particles with ω = 0 (“matter”)

ρ = ρr0

(
a

a0

)−4

+ ρm0

(
a

a0

)−3

. (10.60)

In such a model, the universe should have been initially radiation dominated with ρ =

ρr0

(
a
a0

)−4

, and then “matter dominates”, with ρ = ρm0

(
a
a0

)−3

. Then the model we have also

predicts that universe should become “curvature dominated” at late times, i.e the −K
a2 should

eventually overwhelm the 8πGρ
3 term on the RHS of the Friedmann equation. The universe we

1This is a result I have been trying to find ever since coming across universe models in the FRW metric!
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observe does not appear to have entered the curvature dominated phase yet, even though it is 13.7
billion years old. This is known as the flatness problem.





CHAPTER 11

Matter in the universe

1. Thermodynamics and statistical mechanics of the universe

The fundamental concept in statistical mechanics is phase space,

Figure 64. Schematic of phase space, with section in blue showing an infinites-
imal volume V .

The most basic object is the distribution function in phase space, fi(t, x⃗, p⃗). This function
gives the expectation values of the number of particles of species, i, in the volume, V , above,
by fi(t, x⃗, p)d

3x⃗d3p⃗. To obtain the number density in physical space of that species of particles,
ni(t, x⃗), one has to integrate over the momentum,

ni(t, x⃗) =

∫
d3p⃗fi(t, x⃗, p⃗). (11.1)

If we want to calculate the energy density in physical space, ρi(x⃗, t), then one requires the
energy of a point in phase space, which is also a distribution, E(p⃗,mi). Now the energy density
in physical space is simply

ρi(t, x⃗) =

∫
d3p⃗fi(x⃗, p⃗, t)E(p⃗,mi). (11.2)

Finally the pressure, Pi(x⃗, t) is given by

Pi(t, x⃗) =

∫
d3p⃗fi(t, x⃗, p⃗)

p⃗2

2E
(11.3)

These are the general expression that works for any distribution function. There are two
special distribution functions that are often used in physics. If the particles being considered can

197
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be approximated by an ideal gas of bosons or fermions, then the distribution function for these
particles are the Bose-Einstein and the Fermi-Dirac distribution respectively. If the particles of
massmi are in thermal equilibrium at temperature T , and chemical potential µi, then the expected
number of particles in any tiny volume h3 = (2π~)3 in phase space is given by

fi =
1

exp
(
E−µi
kBT

)
∓ 1

, (11.4)

where the minus sign is for bosons and the positive sign is for the fermions, and E =
√
p⃗2 −m2.

The next step is to change the integration variables in Eq 11.1, 11.2 and 11.3 from p⃗ to E (we can

do this because E =
√
p⃗2 −m2) and substitute in for the distribution function in Eq 11.4 to get

ni =
1

2π2

∫ ∞

mi

(E2 −m2
i )

1
2EdE

exp
(
E−µi
Ti

)
∓ 1

(11.5)

ρi =
1

2π2

∫ ∞

mi

(E2 −m2
i )

1
2E2dE

exp
(
E−µi
Ti

)
∓ 1

(11.6)

Pi =
1

6π2

∫ ∞

mi

(E2 −m2
i )

3
2 dE

exp
(
E−µi
Ti

)
∓ 1

. (11.7)

As is done with most complex equations, to get an idea of what they mean, we take the
equations to appropriate limiting cases to get an appropriate equation and analyse this. In this
case the limiting cases that will be used are when the particles are highly relativistic or when the
particles are non-relativistic. In the relativistic limits (T >> mi, µi, ni) simplifies to

ni =
ζ(3)

π2
T 3
i (11.8)

and for ρi,

ρi =
π2

30
T 4
i . (11.9)

This is for bosons, for fermions one has

ni =

(
3

4

)
ζ(3)

π2
T 3
i (11.10)

ρi =

(
7

8

)
π2

30
T 4
i . (11.11)

The pressure is evaluated using the relation,

Pi = ωiρi (11.12)

and ωi =
1
3 for both bosons and fermions (in the relativistic case). Going to the non-relativistic

limit, T << mi, with µi < mi we have,

ni ≈
(
miT

2π

) 3
2

exp

(
µi −mi

T

)
(11.13)

ρi = mini (11.14)

Pi ≈ Tni. (11.15)

Note that the equation for ni is saying that in thermal equilibrium, as soon as T < mi,
the number density of the particles starts to be exponentially suppressed. The equation for ρi is
intuitive as in the non-relativistic limit one expects the total energy of a system to be dominated by
the mass energy (i.e the kinetic energy is negligible). Note that from ω = Pi

ρi
, ω ≈ 0 as mi >> Ti.
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Another point that needs pointing out is the fact that we have immediately assumed an ideal gas
distribution function to compute ni, ρi and Pi. These distribution functions describe a lot of the
universe that we observe, however, they are limited by the fact that they only work in thermal
equilibrium. If one tries to describe the very early universe, this distribution function no longer
works, therefore one has to generalise the distribution function. The equation of motion followed
by the distribution equation is called the Boltzmann equation. This equation needs to be solved
for the most general solution of fi(t, p⃗, x⃗).

2. Entropy

The universe has been expanding for a long time, so it is obviously not in thermal equilibrium.
This raises the question; why are we considering an expression that only holds in thermodynamical
equilibrium. The answer is that we can find the universe at a point in time where it is in thermal
equilibrium and then use the entropy to find out its state at a later time, when it is not in thermal
equilibrium. Under adiabatic conditions the universe would actually remain thermal equilibrium
throughout its expansion. Adiabatic conditions are when the rate of expansion of the universe,
H = ȧ

a , is much slower than the rate of collisions between particles.

In a fluid, one can think of entropy density, s, such that the total entropy, S, is given by S = sV ,
where V is the spatial volume. One can get S using the first law of thermodynamics,

dE = TdS − PdV (11.16)

Substituting for E = ρV and the total entropy,

d(ρV ) = Td(sV )− PdV (11.17)

This can be written as

(ρ+ P − Ts)dV =

(
T
dS

dT
− dρ

dT

)
V dT. (11.18)

The coefficients of dV and dT must be 0, therefore

s =
ρ+ P

T
. (11.19)

For relativistic particles P = 1
3ρ;

s =
4ρ

3T
. (11.20)

Substituting for ρ from Eq 11.11 gives

sf =
2π2

45
T 3, (11.21)

this is for fermions, for bosons it is,

sb =
7

8
sf . (11.22)

Now if one is in adiabatic conditions, there is no heat transfer therefore dS = 0, i.e S is a
constant. Since V ∝ a3, s ∝ a−3, so from Eq 11.21, T ∝ a−1, i.e temperature drops linearly with
the expansion of the universe.
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3. Big Bang Nucleosynthesis (BBN)

BBN was discovered by Gamow. When we look out into the universe we see an abundance
of the elements present in the periodic table out in the universe. At large, the universe contains
about 75% of hydrogen, 25% helium and the rest of the elements are simply negligible.

In the middle of the 20th century, it was worked out that stars actually generate their energy
from nuclear reactions, converting, predominantly, 4H → He (the p-p chain to be more general).
Fusion reactions continue until we get to Iron, Fe56, as that is the most stable nuclei (has the
maximum binding energy per nucleus). All of the elements heavier than Fe56, are produced in
non-fusion processes like supernova explosions. Gamow and other people realised that if the uni-
verse started off 100% hydrogen then it was not possible to generate 25% helium simply by stellar
fusion reactions.

Gamow showed with a rough back of an envelope calculation that this observed ratio of hy-
drogen to helium could be explained by the production of helium at the big bang. Suppose we
start the universe when it was at a temperature of 10 GeV. At this energy, the particles that
are present are the usual protons, neutrons, electrons, photons, neutrino’s. These are all still
relativistic. Since ni ∝ T 3, all of these species has a number density that is roughly the same.
When the universe cools down by a factor of 10, i.e T ≈ 1GeV , the protons and neutrons start to
become non-relativistic. The number density of a non-relativistic species is given in Eq 11.13, and
so we see that in the non-relativistic case the number density of these non-relativistic particles
drops exponentially (i.e the particles decay to lighter particles that are thermodynamically more
favorable). Here in-lies the problem; by he fact that there still is matter in the universe, all of the
matter did not annihilate with anti-matter. It turns out that for every 109 p̄, there were 109+1, p
(i.e one p of a billion was left over an average).

So now, the cosmological zoo of particles has e, e+, γ, ν′s all with roughly the same number density
with a very small number of p′s left. It is an observed fact about the universe, that, η, which is
defined as the ratio of baryons to photons is 10−9. This slight access of matter over anti-matter
is one of the biggest problems in physics and demands an explanation (other than the anthropic
one!). This process is known as baryogensis and will be discussed in a later section.

νe

e-

n

p

GF

Figure 65. Feynman diagram of Eq 11.23 in Fermi theory.

Now let’s continue to decrease the energy of the universe. The neutrons and protons have
now annihilated and a very small number of them are left over. However, the energy scale is still
much longer than the energy scale of the binding energy,MeV , and thus the neutrons and protons
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have not formed nuclei. The remaining protons and neutrons are in thermal equilibrium with the
remaining particles (electrons, neutrino’s etc) by the reaction

p+ + e− ↔ n+ νe. (11.23)

The idea now is to find the point at which the rate of the reaction in Eq 11.23 is slower
than the rate of expansion, H, at that point, as at that point the equilibrium of this reaction is
broken. At the time in which this reaction was first being thought about, Fermi’s theory of the
weak interactions was generally accepted, therefore the reaction in Eq 11.23 has a diagram shown
in figure 65. In the standard model however, the diagram is given below.

u

d

d d

u

u

νe
e-

W-

gVud

g

Figure 66. Feynman diagram in of Eq 11.23 in the standard model.

Ignoring CKM elements the rate is ∝ g2 1
ρ2−M2

w
, however since Mw >> p, we can approximate

this by q2

M2
w
, which is equivalent to GF according to Fermi theory,

GF ≈ g2

M2
w

≈ 10−5GeV 2. (11.24)

The rate, Γ, is approximately G2
FT

5 (by dimensional analysis). Comparing this to the expan-
sion rate, H. H is given by the Friedmann equation,

H2 =
8πGρ

3
. (11.25)

The energy density, ρ, of the universe can be re-written in terms of the temperature, ρ ∝ T 4,
from Eq 11.9

H2 ≈ 8πG

3
g∗T

4 (11.26)

where, g∗ is the effective number of degrees of freedom. Therefore H is of the order of T 2

Mp
(as

G = 1
Mp

). Equating, H to Γ solve for T , we get T = T∗ ≈ 1MeV for the temperature at which

these reactions can no longer take place. After this temperature, thermal equilibrium is no longer
maintained. The number density of protons, np, at this temperature was

np =

(
mPT∗
2π

) 3
2

exp

(
−Mp

T∗

)
. (11.27)

Similarly, the number density of the neutrons, nN , was

nN =

(
MNT∗
2π

) 3
2

exp

(
−MN

T∗

)
(11.28)

As a first approximation, after thermodynamics ceases to be effective, the protons and neutrons
do not do anything. The proton is stable, it’s lifetime is much longer than the present age of the
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universe. The lifetime of a neutron is roughly 15 minutes, however all of the processes being
discussed happening in the very early universe, therefore neutrons can also be considered stable.
The ratio of the number of neutrons to the number of protons at T∗ is

nN
np

≈ exp

(
MN −Mp

T ∗

)
. (11.29)

T∗ is sometimes called the freeze out temperature, MN −Mp ≈ 1.3MeV , and T ≈ 0.8MeV
(comes from the full calculation). This gives a value for this ratio as about 1

6 . As soon as T drops
below the binding energy of helium, it is favorable for neutron/proton to be in a helium nuclei
and thus helium nuclei are formed. However in the time it takes for T to drop below the binding
energy some of the neutrons will decay, therefore the rate actually becomes smaller, ≈ 1

7 . The
mass density in the helium nuclei will be twice the mass density in neutrons, and the ratio to the
mass density is,

2MN,pnn
MN,p(Mp +MN )

=
2(

np
nn

+ 1
) =

1

4
. (11.30)

Which shows that 25% of the mass of the universe is helium, which agrees with observation.
One possible discrepancy between BBN predictions and observations has emerged; the predicted
abundances of lithium appears to be about a factor of 3 higher then the abundances observed in
outer layers of the lower metalicity stars.

There is analogous calculation to check when the CMB was formed, i.e when did the photons
stop interacting with matter. Electrons and protons can bind together to form hydrogen atoms
(or helium atoms). When the T is greater than the binding energy of these atoms (not nuclei!),
the electrons do not orbit the nucleus due to their large kinetic energy. A similar calculation to
the one just done (for protons and neutrons to form helium nuclei), we can find a TCMB which
is the temperature at which electrons are bound up with nuclei to form atoms. Prior to this
transition, photons could scatter of a lot of particles and hence had a very small mean free path
(relative to t he size of the universe). As soon as atoms formed, the photons stopped colliding
with matter and there mean free path become almost infinite. Calculating, TCMB will give an
idea of the wavelength of the photons at the time of TCMB temperature and these photons are
predicted to still be around today at a much higher wavelength (microwaves). The temperature
of these photons is measured today as T ≈ 3K. TCMB was ≈ 3.3× 103K and since T ∝ a−1, the
universe was smaller by a factor of about 1000 at that time. The moment at which the electrons
combined with the nuclei is known as recombination.

4. Dark matter

4.1. Why dark matter? Dark matter was first discovered by Fritz Zwicky in the 1930’s.
He observed that individual galaxies in a cluster of galaxies were moving much faster than could
be accounted for by the gravitational energy present in that cluster. Which lead Zwicky to believe
that there was more mass then was visible in the cluster, to account for this motion. Zwicky’s
work was largely ignored until the 1970’s when Vera Rubin analysed the galaxy rotation curves
(the velocity at which stars in a galaxy are orbiting the center). This observation has been backed
up by many different types of experiments that all appear to point to the same abundance of dark
matter, which is why dark matter is strongly expected to exist in the universe.

In BBN, we saw that when T ≈ 1MeV , the protons and neutrons combined to form the light
elements in the periodic table. In particular we showed that the matter in the universe is dis-
tributed into about 75% hydrogen and 25% helium (by mass). This prediction is quite robust,
more specifically, it does not depend on η (the baryon to photon ratio). On the other hand the
percentage of Deuterium does depend of η. As η is varied at the time of BBN, the predicted
amount of deuterium varies a lot, and so by observing the amount of deuterium in our universe
one can put a limit upon the value of η, which is ≈ 10−9. This value of η agrees with value of
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predicted by the number of protons and neutrons observed in galaxies and the universe in general.
If one assumes that the matter needed to account for the light curves of the galaxies comes from
protons and neutrons (i.e baryonic matter), then the predicted value of η is completely different,
therefore the matter required to account for this gravitational affect must not be baryonic matter.

4.2. Baryonic acoustic oscillations. Another measurement independent of BBN of this
quantity η, is in the CMB. At the time when the CMB photons were released, (recombination)
the universe contained a plasma and also (we suppose) dark matter, that did not interact with
anything. Suppose that the density of matter of the universe was varying slightly in position.

Figure 67. Schematic showing the baryonic acoustic oscillations. tm represents
the time at which matter is dominant, tr is the time at which radiation is domi-
nant.

When matter started to dominate over radiation, the energy density at the peaks increased
(as matter started to attract more matter from less dense regions). However the plasma also
contains photons, which do not interact with gravity and are bound by the their collisions with
the electrons and protons. Therefore there is a constant tug of war between the gravitational
forces and the pressure coming from the radiation. As photons move around in the plasma , they
oscillate and these oscillations can become “quantised” into phonon’s that produce sound waves.
So the spectrum of the CMB shows the peaks corresponding to wavelengths that happen to be at
the peak of the amplitude of their oscillations when recombination happened. The first peak is the
peak corresponding to the longest wavelength that from the beginning of the matter dominated
era to the time of recombination only had time to complete half an oscillations (i.e get to its peak),
the second peak corresponds to wavelength that had time to complete one full oscillation and so
on. Dark matter played a crucial role in this spectrum of the CMB, by providing deep potential
wells that set the size of these oscillations.

Everything described so far relies on the gravitational interaction of dark matter. Therefore
the obvious thing to ask is, what if it is gravity that is not behaving as we expect. If gravity is
described by general relativity (as we think it is), then one is forced to postulate the existence
of this dark matter1. If dark matter was matter from the baryonic sector, it would have had to

1There is a new theory proposed by Mukhanov, called Mimetic dark matter, http://arxiv.org/pdf/1308.5410v1,
which modifies Einstein’s gravity to account for the effect of dark matter.
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collapse into a black hole (due to the restriction imposed by η). These black holes would have
had to have formed prior to BBN. These types of suggestions generically fall under the name of
massively compact halo objects, MACHOs, which contain any matter that is highly dense but just
not visible, for example brown dwarf stars.

The other possibility is that they are some new elementary particles that interact via gravity.
These types of particles are called weakly interaction massive particles, WIMPs. MACHOs are
heavily constrained by observational evidence, however are not completely ruled out. If MACHOs
were really around, one should be able to observe them using gravitational micro-lensing. Micro-
lensing works as follows; if one observes the intensity of light coming from a star, it would be
expected to be roughly constant. Now if a MACHO, say a black hole, goes in front of it, then
the light from the edges of the star will be bent towards the center and if the observer is in
the same line, the intensity of light will appear to increase. This increase in light can be pre-
dicted for different MACHOs and observations have basically ruled out MACHOs in the range,
10−8Msun < MMACHO < 2Msun.

If there are massive new elementary particles in the universe, we can break them down into
two categories.

(1) Thermal relics: Particles that were in thermal equilibrium in the early universe and
once they reach their freeze out temperature, they would have stopped interacting and
traveled through the universe ever since.

(2) Non-thermal relics: Particles that were never in thermal equilibrium and had their abun-
dances set by some other process. The classic example for this particle is the axion.
There is a problem in the standard model of particle physics called the strong CP prob-
lem, which can be solved by the introduction of this particle which also happens to be a
good candidate for dark matter, that is a non-thermal relic.

Thermal relics can be subdivided further into hot-thermal relics or cold-thermal relics. If the
particle was relativistic after its freeze out temperature, it is said to be a hot thermal relic and
the opposite definition for a cold thermal relic.

As an example, lets take a close look at hot thermal relics. Consider a hot thermal relic particle,
χ. After freeze out, one can assume the number density nχ decreases with increasing volume.
Similarly the entropy density, s, decreases with volume if we assume adiabatic conditions (i.e total
entropy is the same). Therefore, the ratio

nχ
s is constant. Let’s denote the number density today

by nχ,0 and at freeze out it is nχ,f . Similarly the entropy density today is s0 and at freeze out it
is sf . Now we can form the equation

nχ,0
s0

=
nχf
sf

. (11.31)

All the quantities except nχ,0 are knoww, therefore we can solve for nχ,0

nχ,0 =

(
s0
sf

)
nχ,f , (11.32)

where,

s0 = gs,0

(
2π2

45

)
T 3
0

sf = gs,f

(
2π2

45

)
T 3
f

nχ,f = gχ

(
ζ(3)

π2

)
T 3
f . (11.33)

Substituting these into Eq 11.32,
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nχ,0 =
gs,0
gs,f

(
T0
Tf

)3

gχ

(
ζ(3)

π2

)
T 3
f

=
gs,0
gs,f

T 3
0 gχ

ζ(3)

π2
. (11.34)

It is safe to assume the χ’s are non-relativistic today, the present energy density due to the
χ’s can therefore be approximated by ρχ,0 = mχnχ,0,

ρχ,0 = mχ
gs,0
gs,f

T 3
0 gχ

ζ(3)

π2
. (11.35)

Comparing this to the critical density, ρc,0 =
3H3

0m
2
pl

8π gives,

ρχ,0
ρc,0

=
8ζ(3)

3π

gχgs,0
gs,f

mχT
3
0

H2
0m

2
pl

(11.36)

Some of the numerical values are gs,0 = 3.91,H0 = (2.13 × 10−42)h100GeV,mpl ≈ 1.22 ×
1019GeV and T0 = 2.35× 10−13GeV . This gives

ρχ,0
ρc,0

=
gχ
gs,f

8× 10−2

h2100

mχ

eV
. (11.37)

This result is for χ particles that are bosons. If one has fermions, then there is an extra
multiplicative factor of 7

8 on the RHS of Eq 11.37. From observations we know that
ρχ,0
ρc,0

≤ 1
4 ,

which provides a constraint on mχ via Eq 11.37. Note that the neutrino (which decouples around
T ≈ 1MeV ) is an example of a hot thermal relic, therefore we get a limit on the mass of neutrino’s
via this calculation aswell.

After the χ particle decouples they are still relativistic, so they stream across the universe like
mass-less particles until the Hubble drag finally makes them non-relativistic, and brings them to
rest relative to co-moving observers. Before coming to rest, they travel a co-moving distance which
is roughly equal to the “co-moving Hubble radius”, 1

aH , at the moment they come to rest. This
would wipe out the formation of all cosmic structure formation on length scales less than or equal
to this co-moving scale, in conflict with observations. Thus hot thermal relics are observationally
ruled out as dark matter. This procedure of equating the ratio of number density to entropy
density at different times, is quite common and can be applied to cold thermal relics aswell.

5. Vacuum energy

The action for general relativity is

S =

∫
d4x

√
−g
(
R− 2Λ

16πG
+ Lmatter

)
. (11.38)

Where Lmatter is any matter Lagrangian. This action is varied w.r.t gµν to obtain Einstein’s
equations

Gµν + Λgµν = 8πGTµν . (11.39)

Gµν comes from the variation of R in the action, Λgµν comes from the variation of the Λ term
in the Lagrangian and 8πGTµν comes from varying the Lmatter w.r.t gµν . One can also move the
Λ term on to the RHS, where it is considered a component of the energy density (as supposed to
the curvature),

Gµν = 8πGTµν − Λgµν . (11.40)

The Λ acts as a source of energy now, so we are at liberty to include the Λ term inside Tµν to
define a new stress energy tensor, T ′

µν , to get
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Gµν = 8πGT ′
µν . (11.41)

If Lmatter is that of a scalar field, then it takes the form

Lmatter = −1

2
(∂µϕ)

2 − V (ϕ). (11.42)

The potential, V (ϕ), can be chosen arbitrary according to the field theory being analysed.
Suppose V (ϕ) takes the form in figure 68,

Figure 68. The blue line shows the shape of the potential, V (ϕ) in Eq 11.42.

the vacuum state is when the scalar field is constant in space and time (therefore ∂µϕ = 0) and
it is sitting in the minimum potential value aswell. The minimum value of this potential is called
vacuum energy and it basically plays the role of shifting the potential minimum up or down by a
given value. There is observational evidence for the existence of a positive cosmological constant.
The Friedman equation with the cosmological constant is

H2 =
8πGρ

3
− K

a2
+

Λ

3
. (11.43)

5.1. Old and new cosmological problem. It appears that we happen to live at the time
at which the Λ is starting to dominate over the matter, causing the universe to accelerate. If we
lived in an era in which Λ did not dominate, then we could have never observed the acceleration
of the universe’s expansion and would have remained oblivious to the fact that the Λ even existed!
This may same too much of a coincidence to some2 and is known as the new cosmological constant
problem.

The old cosmological constant problem is that the zero point energy of particles in space ap-
pears to be much higher than the vacuum energy observed in the universe.

2Including me.
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6. Baryogenesis

Today we observe the ratio of baryons to photons, η, with a value of 10−9, i.e for any 109

anti-baryons, there were roughly 109 + 1 baryons, so when baryons and anti-baryons eventually
annihilated, a small number of baryons (and no anti-baryons) were left over (note we also assume
that the number of photons and baryons was of the same order). The question is what causes this
imbalance, i.e why were the initial conditions such that there were more baryons than anti-baryons.

To do this day, we have never observed a process which violates the conservation of baryon
number. However it is now believed that the baryon number conservation is actually violated
in the standard model of particle physics itself and in any grand unified theory (GUT) into which
it may be embedded. Hence the baryons could have been decayed by standard model processes.
Furthermore, an epoch of inflation in the early universe would have exponentially suppressed any
pre-existing baryon number density, requiring that they really are generated after the inflationary
epoch.

6.1. Sakharov’s conditions. In the 1960’s, Andrei Sakharov produced the modern picture
taken up by Baryogenesis; the universe started out with an equal abundance of baryons and
anti-baryons and the slight excess of baryons was generated was generated during its subsequent
expansion. In other words, he suggested that the asymmetry could be explained by the laws
of physics, rather than the initial conditions. He came up with three conditions that would be
required for baryogenesis;

Condition 1 Violation of baryon number conserving processes.
Condition 2 Violation of C and CP symmetry.
Condition 3 Violation of thermal equilibrium (in thermal equilibrium, any reaction which creates

baryon number will be precisely balanced by the inverse reaction which destroys baryon
number).

Let’s look at Condition 2 more closely. Consider the distribution functions fj(x⃗, p⃗, t) for the
jth species in a FRW universe: homogeneity and isotropy imply that fj is independent of x⃗ and
of the direction of p⃗, but not its magnitude,

fj(x⃗, p⃗, t) = fj(p, t). (11.44)

Sakharov’s proposal was that the particle and anti-particle distributions were equal at some
initial time, ti

fj(p, ti) = f̄j(p, ti) (11.45)

and unequal and some final tf ,

fj(p, tf ) ̸= f̄j(p, tf ). (11.46)

A parity transformation, P, is defined as,

x⃗, p⃗
P

=⇒ −x⃗,−p⃗. (11.47)

A charge conjugation transformation, C, swaps particles and anti-particles;

fi
C
=⇒ f̄i. (11.48)

Therefore P leaves fj(p, t) unchanged, whereas C and CP both swap fj(p, t) ⇔ fj(p, t). Thus
the initial state (at ti) is invariant under P,C and CP , but the final state (at tf ) is only invariant
under P . Thus, the evolution from ti and tf must violate C and CP (but not necessarily P ).
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6.2. Example of baryogenesis. Consider a particle X with two decay channels;

X → f1, (11.49)

where f1 is a final state with baryon number B1, lepton number L1, and branching ratio r
and the other particle decay is

X → fc (11.50)

where f2 has baryon number B2, lepton number L2 and branching ratio 1 − r. The anti-
particle of X, X̄ also has two decay channels; X̄ → f̄1, (with baryon number −B1, lepton number
−L1 and a branching ratio r̄) and X̄ → f̄2 (with baryon number −B2, lepton number −L2 and
branching ratio 1− r̄).

CPT symmetry requires that X and X̄ have the same mass mX and total decay rate Γx; but
if C and CP are violated, they can have different branching ratios (i.e r ̸= r̄). Now we imaging
that X’s freeze out, and later decay; the ratio of baryon density to entropy density, nB/s, after
the decay will be related to the ratio, nXs (the ratio of the number density of X particles to the
ratio of the energy density) before the decay by,

nB
s

=
nX
s

(sB1 + (1− r)B2 − r̄B2 − r̄B1 − (1− r̄)B2) =
nX
s

(r − r̄)(B1 −B2). (11.51)

Note how the Sakharov conditions show up in this calculation: in order for nB
s to be non-zero,

we need r ̸= r̄ (requiring C and CP violation) and β1 ̸= β2 (requiring baryon number violation).

We also need violation of thermal equilibrium: before the X particles decay, they freeze out
and T drops below mX : otherwise the inverse decay processes (which create X’s and X̄’s from
the thermal bath, and which were neglected in the calculation above) cancel the baryon number
we have just calculated. We want nB

s to match the observed values (10−9), and the above formula
tells us how to check weather it holds in a given model of particle physics: given the Lagrangian for
the model, we look for any particles with several decay channels with different baryon (or lepton)
numbers; we estimate the freeze out abundances of thus particle (nXs ) using techniques similar to
those employed in the dark matter calculation above. We calculate the branching ratios (r, r̄, ..)
for the relevant decays, and finally check that the particle decays after it has been frozen out and
the temperature has dropped below the mass; if so, and the above formulation leads to a predicted
value, which is similar to the observed one, then the theory is good. The scenario described above
was inspired by models of GUT’s in the 1970’s.



CHAPTER 12

Inflationary cosmology

There are two important length scales in the universe, at any given time. One is the Hubble
radius, given by c

H , the other is the scale factor a(t) of the universe. The ratio of these two
scales, c

Ha , which is known as the co-moving Hubble radius. When the universe is decelerating, the
co-moving Hubble radius is increasing. When the universe is accelerating, the co-moving Hubble
radius is getting smaller with time. If the universe was radiation dominated all the way to the big
bang, then the Hubble co-moving radius would have started at zero size and gotten bigger until
the end of the radiation dominated era.

Inflation postulates that at the beginning of the universe, before the radiation dominated era, the
universe underwent an exponential expansion, in which the Hubble co-moving radius decreased
to a very small size, and then inflation stopped and the universe had been radiation dominated
and started decelerating and the Hubble co-moving radius has been increasing every since. If the
co-moving Hubble sphere before inflation, is longer than the co-moving Hubble sphere today, then
there are three problems (that were bothering cosmologists at the time), that will be solved. We
describe each of them below.

1. The three problem; flatness, horizon and monopole problems

1.1. Flatness problem. There are two key equations that describe the FRW universe. One
is the Friedmann equation

H2 =
8πGρ

3
− K

a2
(12.1)

and the other is the continuity equation

ρ̇ = −3H(P + ρ). (12.2)

Eq 12.1 can be written as

1 =
8πGρ

3H2
− K

a2H2
. (12.3)

We then define the critical density, ρc ≡ 3H2

8πG and Eq 12.3 becomes

1 =
ρ

ρc
− K

(aH)2
. (12.4)

Differentiate Eq 12.1 w.r.t time to get

2HḢ =
8πGρ̇

3
+

2KH

a2
(12.5)

substitute Eq 12.2 into Eq 12.5, for ρ̇,

2HḢ =
8πG

3
(−3H)(ρ+ P ) +

2KH

a2
(12.6)

cancel a factor of H from both sides,

2Ḣ = −8πG

3
(ρ+ P ) +

2K

a2
(12.7)

209
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but Ḣ is simply,

Ḣ =
dH

dt
=

d

dt

(
ȧ

a

)
=
ä

a
− ȧ

a2
. (12.8)

Substitute Eq 12.8 into Eq 12.7

2

(
ä

a
− ȧ

a2

)
= −8πG

3
(ρ+ P ) +

2K

a2
(12.9)

this must be equal to Eq 12.6

2ä

a
− 2

(
8πGρ

3
− K

a2

)
= −8πG(ρ+ P ) +

2K

a2
(12.10)

which can be re-written to given the acceleration equation

ä

a
= −4πG

3
(ρ+ 3P ) . (12.11)

For ordinary matter ρ is positive and P is negligible, therefore ä is negative, as expected
(attractive nature of gravity). To get acceleration, one needs a sufficiently negative pressure,
which is what the Λ provides. In fact, from Eq 12.11 we can see that for acceleration ω(≡ P

ρ )

must be less than −1
3 ,

ä > 0 , iff, ω < −1

3
. (12.12)

Now, let’s look at Eq 12.4. We observe today that ρ ≈ ρc (to within 1%), therefore K
(aH)2

must make a very small contribution as the LHS is 1. However, in a deceleration phase, if we
kook backward in time, (aH)2 would becomes larger, therefore this terms made an even smaller
contribution as we look back in time. This is known as the flatness problem. For the universe to ap-
pear as flat as it is today, it must have been even flatter at the start of the radiation dominated era.

Inflation’s explanation is that at some early time, the Hubble sphere was not a small fraction
of the whole Hubble sphere, maybe it was the same order of magnitude as the total sphere. Now
there was an exponentially increase in the size, therefore the sphere would have shrunk to an
exponentially small size and therefore at the beginning of the radiation era, the sphere would
have been very small and slowly accelerated into the larger sphere we see today, which would still
appear flat. If 1

aH decreased by a factor eN during inflation (where N is called the “number of

e-folds of inflation”) then the condition is N ≥ ln
(

(aH)r
(aH)0

)
, where the subscripts r and 0 denotes

the start of the radiation era or the present day, respectively.

1.2. Horizon problem. Around an observer in a FRW universe, there exists a future hori-
zon. This is unlike a static black hole metric where there is a horizon around the black hole. The
future horizon is the maximum limit to which a signal can be sent to. Similarly a past horizon is
one in which any signal sent beyond this horizon will not reach an observer at the present day. In
an accelerating universe, observers will have future horizons, in a decelerating universe, observers
will have past horizons. This is easily seen by the FRW metric,

ds2 = a2(η)[−dη2 + dχ2 + χ2 sin2 χdθ2], (12.13)

where η is the conformal time. Photons follow null geodesics and taking a radial path of the
photon (without loss of generality due to spherical symmetry),

η =

∫
dt

a
=

∫
1

ȧ

da

a
(12.14)

but ȧ = a ȧa ≡ Ha,
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η =

∫ a0

0

1

aH

da

a
. (12.15)

If the co-moving Hubble radius was constant, then η would be proportional to ln a, which
means we would have a singularity at the origin. However, if the co-moving Hubble radius 1

aH
goes to zero at the origin, then the singularity will be removed as the ln a will diverge very slowly
compared to 1

aH going to zero, and inflation does exactly this. It forces 1
aH to go to zero and get

rid of the singularity.

Another way of expressing the Horizon problem is words, is to say that the CMB appears to
be extremely to be extremely uniform in every direction (to one part in 105). Yet according to the
big bang model, the only causally connected regions of space at the time of re-combination should
have been around one degree in angular size as observed today. Therefore it is not possible that
the entire universe at that time could have thermally equilibriated to such a uniform tempera-
ture. Which then raises the question of why the universe appeared to be so uniform at that time.
Inflation provides the solution to this problem by saying taking some small patch of the universe
that was initially in thermal equilibrium and driving to exponentially in size to make it very large,
such that the original causally connected patch would no longer appear to be in causal contact.

1.3. Monopole problem. In the 1970’s, the first GUT’s had first been discovered. John
Preskill noticed that if the universe is described by a GUT, then as the universe cooled through
the GUT temperature (energy scale of GUT’s) scale, one gets spontaneous symmetry breaking.
The GUT symmetry break down to the symmetry of the standard model. The bosonic fields are
disordered at the horizon scales at that time and as a result, these stable field configurations that
get formed are called magnetic monopoles, each of which is then stable and has a mass roughly at
the GUT scale, ≈ 1016GeV . There would be about one of these per Hubble volume at the time.
The Hubble volume today is much larger and therefore the overall mass of these monopoles today
would be extremely large and would certainly be observable, therefore these monopoles are ruled
out by observations.

Inflation solves this problem in a similar way to the solution of the Horizon problem. If the
GUT symmetry breaking happened before inflation, then each small Hubble co-moving sphere
will have about one monopole and then it is exactly one of these spheres that is blown up expo-
nentially into the universe we see today and therefore there would be only one magnetic monopole
floating around in the universe today (no wonder we haven’t found it!).

2. Quantum field theory in curved space-time

Let’s start with the simplest action; the action for a free real scalar field, ϕ, and take the space
to be flat initially, i.e gµν = ηµν ,

S =

∫
d4xL =

∫
d4x

(
−1

2
ηµν(∂µϕ)(∂νϕ)−

m2ϕ2

2

)
. (12.16)

2.1. Classical field theory. We start with classical field theory. By differentiating L w.r.t
ϕ̇, we obtain the momentum canonically conjugate to ϕ,

π ≡ ∂L

∂ϕ̇
= ϕ̇. (12.17)

By varying the action w.r.t ϕ, we obtain the classical equations of motion, which is the flat
space Klein-Gordon equation,

−�ϕ+m2ϕ = 0. (12.18)

where � ≡ ηµν∂µ∂ν , is the wave operator in flat space. It we define the inner product between
two field configurations to be,



212 12. INFLATIONARY COSMOLOGY

⟨ϕ1|ϕ2⟩ ≡ −i
∫
d3x⃗(ϕ1(∂tϕ

∗
2)− (∂tϕ1)ϕ

∗
2). (12.19)

Note that ∂t is used as ϕ only depends on time due to the homogeneity of the field and thus
all the spatial derivatives are zero. The solutions to Eq 12.18 are

ϕk⃗ =
1√
2ω
ei(k⃗x⃗−ωt), (ω =

√
k⃗2 +m2). (12.20)

Indeed, these positive-frequency plane-waves ϕk⃗ form a complete orthonormal basis for the
solutions of Eq 12.18, so that we can expand any such solution in the form

ϕ(x⃗, t) =

∫
d3k⃗

(2π)2
(ak⃗ϕk⃗ + a∗

k⃗
ϕ∗
k⃗
). (12.21)

2.2. Quantum field theory. We quantise by promoting π and ϕ to be space-time operator
that satisfy canonical commutation relations given below

[ϕ(x⃗, t), ϕ(x⃗′, t)] = [π(x⃗, t), π(x⃗′, t)] = 0

[ϕ(x⃗, t), π(x⃗′, t)] = iδ3(x⃗− x⃗′). (12.22)

It is more convenient to discuss these fields in terms of particles. We do that by going to
Fourier space. So we promote the Fourier coefficients ak⃗ and a∗

k⃗
in Eq 12.21 to operators ak⃗ and

a†
k⃗
satisfy the algebra of creation and annihilation operators,

[ak⃗, ak⃗′ ] = [a†
k⃗
, a†
k⃗′
] = 0

[ak⃗, a
†
k⃗′
] = δ3(k⃗ − k⃗′). (12.23)

The vacuum state |0⟩ is the state defined by the fact that it is annihilated by all of the
annihilation operators,

ak⃗|0⟩ = 0, ∀k⃗ (12.24)

and all the subsequent higher energy states are created by action with creation operators, a†
k⃗
.

Acting with a creation operator once on the ground state creates a quantised excitation that is
interpreted to be a particle of that field. In fact one can define an operator, Nk⃗, that measures

the number of excitations in a field (at the wavelength, k⃗)

Nk⃗ ≡ a†
k⃗
ak⃗. (12.25)

2.3. Quantum field theory in curved space-time. In curved space-time the metric is no
longer Minkowski, therefore the action becomes

S =

∫
d4x

√
−g
(
−1

2
gµν(∂µϕ)(∂νϕ)−

m2ϕ2

2

)
. (12.26)

The calculation follows the same procedure as we did in the flat metric. We obtain the
conjugate momenta to ϕ, πϕ

πϕ =
∂L

∂ϕ̇
= −

√
−gm2ϕ. (12.27)

The action is varied w.r.t ϕ, which gives the same equations of motion as before except the
metric is no longer Minkowski therefore the wave operator is different;

−�ϕ+m2ϕ = 0, � ≡ gµν∇µ∇ν . (12.28)

The inner product is now defined as
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⟨ϕ1|ϕ2⟩ ≡ −i
∫
d3x⃗

√
g3u

µ(ϕ1(∂µϕ
∗
2)− (∂µϕ1)ϕ

∗
2) (12.29)

where the integral is over a spatial (constant time) slice parametrised by the spatial coordi-
nates, x⃗, and g3 is the determinant of the spatial 3 metric of the slice, and uµ is a time-like unit
vector orthogonal to the slice. As before, we expand the field in terms of a complete set of positive
frequency solutions ϕn and negative frequency solutions ϕ∗n of the wave equation

ϕ(x⃗, t) =
∑
n

(anϕn + a∗nϕ
∗
n). (12.30)

The solutions ϕn, ϕ
∗
n to the equations of motion are no longer simple plane waves, since they

are in curved space-time. The key point is that in curved space, different observers (e.g at different
points in space-time, or at the same points but in different states of motion) will in general disagree
about how to split up the solutions into positive and negative frequency. Suppose one observer,
O expands ϕ as Eq 12.30 and another observer, Ō, expands ϕ as

ϕ(x⃗, t) =
∑
n

(ānϕ̄n + ā†nϕ̄
†
n) (12.31)

where ϕ̄ can be expanded in terms of the ϕ’s as they form a complete orthonormal set,

ϕ̄n = αnmϕm + βnmϕ
†
m. (12.32)

The coefficients α and β are called Bogliubov coefficients. Once we have the expressions for ϕn
and ϕ̄n, we can extract the Bogliubov coefficients by calculating the appropriate inner products,

αmn = ⟨ϕ̄m|ϕn⟩ βmn = −⟨ϕ̄m|ϕ†n⟩. (12.33)

Substituting in for ϕ̄n from Eq 12.32 into Eq 12.31 and comparing to Eq 12.30, the observer O’s
creation and annihilation operators are related to Ō’s by the so-called “Bogliubov transformation”:

an = āmαmn + ā†mβ
†
mn. (12.34)

Since the ān’s and ā†n;s must obey the creation/annihilation commutation relations that are
identical to the ones obeyed by an and a†n, we find that, if we regard the Bogliubov coefficients
αmn and βmn are matrices, they must obey the following constraints

β†
α − (β†

α)
† = 0 1 = α†α− (β†β)†. (12.35)

O and Ō will each define their own vacuum state to be the state that is annihilated by all of
their own annihilation operators

an|0⟩ = 0 ān|0̄⟩ = 0 (12.36)

and they will each define their own number operators in terms of their creation and annihilation
operators,

Nn ≡ a†nan, N̄n ≡ ā†nān. (12.37)

So according to Ō, the state |Ō⟩ is vacuum, containing no particles. But according to O, it is
full of particles. Indeed, according to O, the expectation value of the number of particles of type
n in the state |0̄⟩ is given by

⟨0̄|Nn|0̄⟩ = ⟨0̄|(α∗
nā

†
n + βnān)(αnān + β∗

nā
†
n)|0̄⟩

= |βn|2⟨0̄|ānā†n|0̄⟩
= |Bn|2⟨0̄| 1− ā†nān︸ ︷︷ ︸

T1

|0̄⟩

= |Bn|2 (12.38)
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where in T1 we have used the commutation relation, [ānā
†
n] = 1.

2.4. Unruh effect. We look at two different coordinates of flat space. Consider a 2D flat
space with time coordinates, t and space coordinates, x. The metric of this space is

ds2 = −dt2 + dx2. (12.39)

We want to, eventually, go to coordinates that correspond to a uniformly accelerating observer.
A uniformly accelerating observer, moves along a hyperbola, that asymptotes to the light cone
null rays (look at figure 48 for picture). First, let’s switch to coordinates in the frame of the light
cone, u± ≡ x± t; which is equivalent to du± = dx± dt. Substituting this into Eq 12.39 gives

ds2 = du+du−. (12.40)

Now we introduce u± = x± t = 1
ae
aū± , sometimes called the “warped” light cone coordinates;

the metric now becomes

ds2 = ea(ū++ū−)dū+dū−. (12.41)

Finally we switch to “warped Cartesian coordinates”, ū± ≡ x̄± t̄,

ds2 = e2x̄(−dt̄2 + dx̄2). (12.42)

The metric in the barred coordinate looks just like the original metric, except it has an extra
conformal factor in front. These barred coordinates are called Rindler coordinates. Notice that
while U± runs from −∞ to +∞, the ū± only run from 0 to ∞ as the exponential is always positive.
Now let’s consider a mass-less scalar field on the Rindler space. The equation of motion for this
field in Minkowski or Rindler coordinates is

�ϕ = 0 � = gµν∇µ∇ν . (12.43)

In Minkowski, gµν ≡ ηµν , therefore Eq 12.43 is simply(
∂2

∂t2
− ∂2

∂x2

)
ϕ = 0. (12.44)

In Rindler space however, Eq 12.43 becomes

e−2ax̄

(
∂2

∂t̄2
− ∂2

∂x̄2

)
ϕ = 0. (12.45)

However one can just divide through by e−2ax̄ to get an identical equation as Eq 12.44. The
positive frequency solutions for Eq 12.44 are

ei(kx−ωt) ∝ ϕk (ω = |k|). (12.46)

The positive frequency solutions for Eq 12.45 are

ϕ̄k ∝ ei(kx̄−ωt̄). (12.47)

Firstly, we want the wavefunctions to be normalised, so the inner product in Eq 12.39 must be
satisfied. The normalisation factor is 1√

2ω
. Imposing the conditions, ⟨ϕn|ϕm⟩ = δmn, ⟨ϕ∗n|ϕ∗m⟩ =

−δmn, ⟨ϕn|ϕ∗m⟩ = 0, one can get the β coefficients via,

⟨ϕn|ϕ̄∗m⟩ = βmn. (12.48)

To compute the inner product in Eq 12.48, one has to convert the wavefunctions so that both
of them are in the same coordinate system, either Minkowski space or Rindler space. Computing
the inner product and obtaining |β|2, which gives the measure of the number of particles, shows
that the number of particles is that given by the Bose-Einstein distribution for an ideal has of
bosons at finite temperature. Starting from the Minkowski line element
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ds2 = −dt2 + dx2 (12.49)

we can make the coordinate transformation,

t = ρ sinhσ x = ρ coshσ (12.50)

to obtain

ds2 = dρ2 − ρ2dσ2. (12.51)

Along the imaginary time direction, ϕ = iσ, the line element becomes,

ds2 = dρ2 + ρ2dϕ2 (12.52)

which is precisely the flat Euclidean line element expressed in polar coordinates. This space
is, of course, periodic in the ϕ direction, with period 2π. Now, a Rindler observer riding along a
curve of constant ρ = ρ0 has constant proper acceleration a = 1

ρ and if we look at the line element,

the corresponding proper time coordinate is not σ, but τ = ρ0σ. Therefore, sinϕ has a period
2π, this observer’s proper time is periodic in the imaginary time direction, with period −2πρi.
Identifying this with −iβ, we find that this observer sees a temperature,

T =
1

2πρ0
=

a

2π
. (12.53)

The Unruh effect is an example of a more general phenomena; thermal states are periodic
in imaginary time. We can see this by simple quantum mechanics and statistical mechanics. In
quantum mechanics, if we have a state |ψ1⟩ at time t1 and |ψ2⟩ at time t2, and we want to know
what is the amplitude, T, of the state |ψ1⟩ evolving into |ψ2⟩, in the time t2 − t1, we use the time
evolution operator, e−iHt,

T ≡ ⟨ψ2|e−iH(t2−t1)|ψ1⟩ (12.54)

In statistical mechanics, a state in thermal equilibrium at temperature T is described by the
density matrix, ρ ∝ exp (−βH), where β = 1

kBT
and the key object is the partition function, Z,

given by

Z = Tr(e−βH) =
∑
n

⟨ψn|e−βH |ψn⟩. (12.55)

The expectation value of a physical observable A, which has a corresponding Hermitian oper-
ator, Â, ⟨A⟩, is given by Tr(ρ,A). Let’s look at a single term in Eq 12.55,

⟨ψm|e−βH |ψm⟩. (12.56)

By comparing Eq 12.56 to 12.54, we see that if −iβ = (t2 − t1), then these two expressions
are the same. So what this is saying that calculating the transition amplitude of going from state
|ψ2⟩ to |ψ1⟩ in time (t0, t1), is equivalent to taking the state |ψm⟩ and evolving it in the imaginary
time direction, by a factor −β, and finding the amplitude that it comes back to itself.

2.5. De-Sitter space temperature. Let’s apply the formulation used for the Unruh affect
for de-Sitter space. In static coordinates the de-Sitter line element is

ds2 = −
(
1− r2

ρ20

)
dt2 +

(
1− r2

ρ20

)−1

dr2 + r2dΩ2
2 (12.57)

where ρ0 = 1
H0

is the de-Sitter radius. Let’s look at radii closer to the horizon, i.e define
coordinates R = ρ0 − r; and look at the region 0 ≤ R << ρ0. In this case, we get(

1− r2

ρ20

)
=

(
1− (ρ0 −R)2

ρ20

)
≈ 2R

ρ0
. (12.58)

Substituting Eq 12.58 into 12.57,
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ds2 = −
(
2
R

ρ0

)
dt2 +

(
1

2R/ρ0

)
dR2︸ ︷︷ ︸

T2

(12.59)

where the angular part has been ignored for now. We define T2 = dχ2, therefore

dχ =
dk√
2R/ρ

. (12.60)

Integrating, χ =
√
2ρ0R

1
2 . Substituting Eq 12.60 into Eq 12.58,

ds2 = −χ
2

ρ20
dt2 + dχ2. (12.61)

Now if we switch to imaginary time coordinates, ϕ = i(t/ρ0), we find;

ds2 = dχ2 + χ2dϕ2 (12.62)

which is once again the flat Euclidean metric ds2 = dx2+dy2, expressed in polar coordinates.
Again by the fact that ϕ is periodic in 2π, the t must have period −2πρ0i = −iβ, or in other
words the de-Sitter space has temperature

T =
1

2πρ0
=
H

2π
. (12.63)

The constant temperature of de-Sitter space excites a scale invariant spectrum of fluctuations
in a mass-less scalar field. The fluctuations are probably the most important thing in cosmology
as without them, we wouldn’t be here, infact nothing interesting would happen in the universe if
it were perfectly homogenous and isotropic.

3. Density fluctuations

If the universe has some density fluctuations in it, then the first thing to do is to Fourier
decompose this function that describes the fluctuations in the universe,

ρ(x⃗) =

∫
d3k

(2π)3
ρk⃗e

−ik⃗x⃗ (12.64)

this is done because the universe is, to first approximation, translationally invariant in space,
then at linear order, as long as these perturbations are small (i.e quadratic terms can be ignored),
the individual Fourier components remain independent of each other, and each Fourier mode
evolves independently (this is an observed fact about the universe). So we have a single sine wave,
which in co-moving coordinates has a fixed length. Therefore the only thing to think about is how
does it’s amplitude evolve in time. Since the physical wavelength of the Fourier mode, λa = a(t)λ
(λ is the co-moving wavelength), increases with time, it is important to see weather it becomes
larger than the Hubble radius, rH , given by c

H(t) , as there will be a dramatic transition when

these two length’s cross. Usually the situation is that if λp is bigger then rH , the amplitude of
the Fourier mode is fixed. When rH becomes larger than λP , the Fourier mode starts to oscillate.
If this Fourier mode belongs to a gravitation wave, the oscillations dampen down the amplitude
and make the signal very weak. If the Fourier mode belongs to a density perturbation, then the
amplitude increases and turns into galaxies we see today. Ever since the universe has been in the
radiation dominated era, the universe has been decelerating, (neglecting the relatively recent Λ
dominated era). During the time that it has been increasing faster then the physical wavelengths
proportional to a, λa. Therefore if the Fourier modes are around for long enough, as soon as rH
is greater than λp, they will oscillate as described above.

The idea of inflation is that we assume that there was an epoch before to the radiation domi-
nated epoch, during which the universe was exponentially accelerating, thus the Hubble radius
would have been growing slower than the physical length scale of the Fourier modes, λp. If the
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universe was accelerated by some form of matter, described by the equation of state parameter,
ω = −1 (i.e vacuum energy), then during inflation, rH , is constant and a(t) grows exponentially.
So the physical length scale starts off as very small compared to the Hubble scale.

Figure 69. This represents one Fourier mode oscillation with wave-vector k⃗. In
co-moving coordinates, this wave does not stretch its physical length stretches
proportional to a, but its co-moving wavelength remains constant.

This means that the Fourier mode can be considered to be confined locally in the overall
manifold that describes the geometry of the universe. Therefore initially the Fourier mode will
think it is in flat Minkowski space. The accelerated expansion of the universe makes this physical
wavelength grow exponentially, relative to the Hubble length scale (as rH is roughly constant) and
will soon become longer than the Hubble radius. In cosmology, when λp is smaller than, rH it is
said to be “inside the horizon”, when λp is larger than rH it is said to be “outside the horizon”.
So in the inflationary scenario, the Fourier modes start of inside the horizon, inflation causes rapid
expansion and therefore takes the modes outside the horizon. Once inflation is finished, the modes
re-enter the horizon at some later time, as the universe decelerates in the radiation and matter
dominated era. Physically, this Fourier mode is sitting in the vacuum state, with some zero point

energy, say ~ω
2 , and oscillates with frequency ω = kc

a(t) (as ω =
√

k2

a +m2 and we have a mass-less

field), where kc =
2π
λc
.

In the beginning when a(t) is small, ω is very large and therefore the energy of the oscillations is
high. Recall that for de-Sitter space the temperature is H

2π and since rH is constant and is less
than λc, during inflation, the temperature of the space is not large enough to excite this Fourier
mode. However at the point when λc ≈ rH , ω becomes small, therefore there comes a point at
which the temperature increases enough to excite the Fourier mode and cause it to oscillate. This
is what is meant when one says that perturbations are created.

When we look at the plot of the CMB in figure 70, we see the values of Cl (which is the mean
square value of the spherical harmonics over all l at a given m) plotted against l. The data agrees
beautifully with the predicted spectrum. The spectrum we see is the spectrum of fluctuations
roughly 3× 105 years after the big bang. When we are calculating the theoretical curve that fits
it, the idea is that the initial spectrum of perturbations, had no none of the bumps seen in the
spectrum. In other words, if one plots the mean square size of the perturbations in the early



218 12. INFLATIONARY COSMOLOGY

universe, at the beginning of the radiation dominated epoch as a power law in k, i.e kn, then the
value of n the so-called spectral index is roughly zero. So if a Fourier mode is chosen randomly in
the early universe and we ask what it’s amplitude is; first of all the universe is isotropic, therefore

the amplitude does not depend on the direction of k⃗ corresponding to that Fourier mode, it only
depends on the magnitude of k. The observational fact that makes the theoretical curve fit the
observed bumps in the CMB spectra is saying that the power spectrum of kn has a spectral index
that is roughly zero (-0.04 ± 0.01). Therefore to first approximation every Fourier mode is roughly
the same in amplitude (to first approximation) in the early universe. Therefore we say that the
perturbations in the early universe were “scale invariant”.

Figure 70. CMB spectrum taken from Wikipedia. The peaks come from the
baryonic acoustic oscillations that carry an imprint of the primordial density
fluctuations in the amplitude of these peaks.

Now, if we go to the time where inflation ended and the radiation dominated epoch began.
The universe is decelerating, therefore rH is increasing relative to λc and the Fourier modes
eventually come inside the horizon and then the CMB photons were released. At the beginning
of the radiation dominated era, all the Fourier modes had the same amplitude. As λc ∝ Hc, the
modes become excited again. If the Fourier mode corresponds to a density perturbation, then the
perturbation will grow as the regions with more matter will have more gravitational pull and will
attract more matter (whereas if the density has a component of pressure, i.e photons, then we get
a competition between pressure and gravitational force which leads to baryon acoustic oscillations
as described in section 4.2). The role of inflation here is to provide a scale invariant primordial
spectrum of perturbations.

4. Inflationary perturbations

4.1. Single-field slow-roll inflation. There were problems with the homogeneity of the
universe in the 1980’s (flatness, horizon, monopole) originally lead to the idea of inflation. It
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was soon realised that the simplest way to obtain inflation was with a slowly varying scalar field,
generally called the inflaton field. To start of with, we take a closer look at this single-field slow
roll inflation.

Figure 71. The shape of the inflaton field, ϕ, potential, V (ϕ).

The field starts out at a potential that is not minimum (for unexplained reasons) and slowly
rolls down the potential, following it’s equations of motion. The action is that of general relativity
with the matter Lagrangian of a general scalar field

S =

∫
d4x

√
−g
(

R

16πG
− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
. (12.65)

We define the slow-roll parameters,

ϵ =
1

2

m2
pl

8π

(
V ′(ϕ)

V (ϕ)

)2

(12.66)

η =
m2
pl

8π

V ′′(ϕ)

V (ϕ)
(12.67)

We assume that the potential V (ϕ) is such that the field can “roll” monotonically down it’s
potential (with ϵ and η are both << 1), to a local minimum at ϕ = ϕmin with V (ϕmin) = 0.
This is the framework for a “single-field slow roll inflation”. Varying this action w.r.t ϕ, gives the
equation of motion

−�ϕ+ V (ϕ) = 0. (12.68)

By varying w.r.t g we get the usual Einstein field equations,

Gµν = 8πGTµν . (12.69)

To begin with we look at the homogenous solutions, i.e the metric gµν is the FRW metric and
ϕ is only a function of time, ϕ0(t). In this case, Eq 12.68 becomes

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (12.70)

and Eq 12.69 gives
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H2 =
8πGρ

3
(12.71)

where ρ is the energy density of the inflaton field,

ρ =
ϕ̇2

2
+ V (ϕ). (12.72)

Eq 12.70 is like the equation of motion for a particle experiencing two different forces; a
potential force (the V term) and a friction force (the 3Hϕ term). The field starts in the slow-
roll regime: it is strongly over-damped and quickly relaxes to it’s “terminal velocity”, where it’s
acceleration is negligible in Eq 12.70 and the drag approximately balances the potential force

ϕ̇ ≈ −V
′(ϕ)

3H
. (12.73)

This means that the condition ϵ << 1 becomes ϕ̇ << V (ϕ), which implies w ≈ −1 and here
ä > 0. Eventually when the field gets close to the minimum so that V (ϕ) ≈ 1

2m
2ϕ2 +O(ϕ4) and

H < m, the field begins under-damped oscillations ϕ(t) ∝ a−
3
2 cos (mt) and the energy density

decays as ρ ∝ a−3 which implies w = 0 and hence ä < 0. So the field starts in it’s slow-roll
regime, gradually rolls down it’s potential as the universe accelerates; finally close enough to the
minimum, the slow-roll conditions cease to hold and the ϕ begins under-damped oscillations about
it’s minimum as the universe stops accelerating and begins to decelerate.

By quantum mechanics we know that the vacuum state of this field cannot be empty, but must
have zero point fluctuations. As the fields rolls down the potential, these fluctuations get ampli-
fied by the background stretching of the universe into a scale invariant spectrum of perturbations,
which matches the primordial spectrum of perturbations.

4.2. Perturbations. So far we have Eq 12.68 and Eq 12.69 which are the general equations
of motion and then Eq 12.70 and Eq 12.71 are obtained in the homogenous approximation. Now
we don’t assume that the field is homogenous. Instead we take the homogenous case as a first
approximation and perturb it. The single field, ϕ(t, x⃗) is perturbed as follows,

ϕ(t, x⃗) = ϕ0(t) + δϕ(t, x⃗) (12.74)

where ϕ0(t) is the zeroth order homogeneous limit field. Similarly, the metric is perturbed as,

gµν(t, x⃗) = g(0)µν (t) + δgµν(t, x⃗) (12.75)

where g
(0)
µν (t) is the FRW metric. Putting Eq 12.74 into 12.68 gives,

−�(ϕ0 + δϕ) + V ′(ϕ0 + δϕ) = 0. (12.76)

Taylor expanding V ′ in small quantity δϕ gives

−�(ϕ0 + δϕ) + V ′(ϕ0) + V ′′(ϕ0)δϕ = 0. (12.77)

However from Eq 12.68, this simplifies to

�δϕ+ V ′′(ϕ0)δϕ = 0, (12.78)

similarly, perturbing Eq 12.69 gives

Gµν = G(0)
µν +G(1)

µν (12.79)

8πGTµν = 8πG(T (0)
µν + T (1)

µν ) (12.80)

Equating Eq 12.79 to 12.80 (again the zeroth order terms cancel from Eq 12.69)

G(1)
µν = 8πGT (1)

µν . (12.81)
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Now Eq 12.78 and 12.81 would need to be solved to obtain the mode functions. When we
perturb a single in FRW space one would naively think that there are 10 + 1 perturbations
(i.e 10 components from the symmetric metric and 1 from the scalar field). The metric can be
decomposed using a so-called ADM decomposition as

ds2 = Ndt2 + γij(dx
i +N idt)(dxj +N jdt). (12.82)

The metric has 10 independent degrees of freedom, here we have 6 that go into γij (3D
metric), which represents coordinates at constant t. The remaining 4 components go into the so
called “lapse”, N , “shift” N i. These 4 N and N i, degrees of freedom can be removed by constraint
equations in general relativity (which come from the Bianchi identities Rαβ[γδ;ϵ] = 0). Now γij has

6 degrees of freedom, however we can still impose 4 gauge conditions to get the number of degrees
of freedom down to 2. The gauge chosen to work in is,

δϕ = 0, γij = a2(t)e2ζ(t,x⃗)e2hij(t,x⃗) (12.83)

where δijhij = δij∂ihjk = 0. Physically, the 3 physical modes are ζ (which, in this δϕ = 0
gauge, physically corresponds to the perturbation of the Ricci 3 curvature of the spatial slices)
and the two independent components of a traceless transverse 3× 3 symmetric matrix hij (which
physically corresponds to the two polarizations of a gravitational wave). ζ is referred to a “pri-
mordial scalar perturbations” or “primordial curvature perturbations” it is observed more or less
directly by observing the fluctuations in the temperature of the CMB between different points
on the sky; it is the primordial perturbation that is ultimately responsible for all of the density
perturbations and structure that we see in the universe today. The 2 independent components of
hij are referred to as “primordial tensor perturbation”; they are primordial gravitational waves
predicted by inflation, but are extremely difficult to observe.

4.3. Spectra. The starting point is to take the perturbations, put them into the original
action and expand them up to quadratic in order in small perturbations, ζ, hij . The zeroth order
part just gives back the homogenous equations, the first order terms are just zero, since the action
is defined to be a minimum in a theory and so the second order (quadratic) part of the action
describes the behavior of the perturbations1. The action is split up into the scalar part ζ and the
tensor part hij ,

Sζ = −1

2

∫
dηd3x⃗z2ηµν(∂µζ)(∂νζ) (12.84)

Sh = −1

2

∫
dηd3x⃗((mpla)

2ηµνhs,µh
s
,ν) (12.85)

where x⃗ is a co-moving coordinate, η is the conformal time, ηµν is the Minkowski metric. The s
superscript in Eq 12.85 needs to be summed over ±1 to get both polarizations of the gravitational
waves. z is not a perturbation. It is a background function of time, z(η), is defined by

z2(η) = 2ϵa2(η) (12.86)

where ϵ is the slow-roll parameter. In other words, if ϵ is constant (which it nearly is for
inflation), z ∝ a. z acts as the effective scale factor felt by the mass-less scalar field ζ. In fact,
if z2 is replaced by a2, Eq 12.84 would be exactly the action for a mass-less scalar field on the
Minkowski metric.

The two scalar fields (s = ±) are also defined as,

hs(η, x⃗) =

∫
d3k⃗

(2π)3
hs
k⃗
(η)eik⃗x⃗ (12.87)

which are dimensionless. Let’s also split up the ζ and hij into Fourier components;

1The full derivation is given in section 2 of http://arxiv.org/abs/astro-ph/0210603
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ζ(η, x⃗) =

∫
d3k⃗

(2π)
3
2

ζk⃗(η)e
ik⃗x⃗ (12.88)

hij(η, x⃗) =

∫
d3k⃗

(2π)
3
2

ϵsij(k⃗)h
s
k⃗
(η)eik⃗x⃗ (12.89)

where we sum over perturbations s = ± in Eq 12.89 and the 3× 3 polarization tensors ϵ†ij and

ϵij are real (ϵ
∗
ij = ϵij), symmetric (ϵij = ϵji), traceless (ϵii = 0), transverse (ϵijk

j = 0), even parity

(ϵij(k⃗) = ϵij(−k⃗)) and “ortho-normal” (ϵsij(k⃗)ϵ
s′

ij(k⃗) = 4δss
′
). Of course, the final expression for

the tensor spectrum will not depend on the normalisation of the polarization tensor ϵsij , but this
particular choice is convenient, because it canonically normalizes the scalar fields.

The conjugate momenta for these actions is;

πζ =
∂Lζ
∂ζ ′

= z2ζ ′

πh =
∂Lh
∂h′s

= (mpla)
2h′s (12.90)

where the primes denote the derivative w.r.t η and the equation of motion coming from these
two actions are,

ζ ′′ + 2

(
z′

z

)
ζ ′ −∇2ζ = 0

h′′s + 2

(
a′

a

)
h′s −∇2hs = 0 (12.91)

Now we canonically quantise;

[ζ̂(η, x⃗), π̂ζ(η, x⃗
′)] = iδ(3)(x⃗− x⃗′)

[ζ̂(η, x⃗), ζ̂(η, x⃗′)] = [π̂ζ(η, x⃗), π̂ζ(η, x⃗
′)] = 0, (12.92)

and similarly for hs

[ĥs(η, x⃗), π̂s′(η, x⃗
′)] = iδ(3)(x⃗− x⃗′)δss′

[ĥs(η, x⃗), ĥs′(η, x⃗
′)] = [π̂s(η, x⃗), π̂s′(η, x⃗

′)] = 0. (12.93)

Since ζ̂ is a real and Hermitian, its Fourier components satisfy ζ̂k⃗ = ζ̂†
−k⃗

, Similarly for ĥs, ĥ
s
k⃗
=

ĥs
−k⃗

. Now we expand ζ̂ in terms of creation and annihilation operators;

ζ̂ =

∫
d3k⃗

(2π)3

(
ak⃗ζk⃗ + a†

k⃗
ζ†
k⃗

)
. (12.94)

In FRW, we want to write each of the positive frequency ζk⃗ and negative frequency, ζ−k⃗
solutions as a part that depends pn space and a part that depends on time

ζk⃗ = ζk(η)e
ik⃗x⃗. (12.95)

Note ζ(η) only depends on the magnitude of k⃗ due to the isotropy of FRW. Putting Eq 12.95

into 12.94 and using ζk⃗ = ζ†
k⃗
we get
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ζ̂k⃗ =

∫
d3k

(2π)3

(
ak⃗ζk(η)e

ik⃗x⃗ + a†
−k⃗
ζ†k(η)e

ik⃗x⃗
)

=

∫
d3k⃗

(2π)3

(
ak⃗ζk(η) + a−k⃗ζ

†
k(η)

)
eik⃗x⃗. (12.96)

Similarly for ĥs
k⃗

ĥs
k⃗
=

∫
d3k

(2π)3

(
hk(η)a

s
k⃗
+ h∗k(η)a

s†
k⃗

)
. (12.97)

Now the ζ creation and annihilation operators (a†
k⃗
and ak⃗) and the hs creation and annihilation

operators (as†
k⃗

and as
k⃗
) satisfy the usual commutation relations,

[ak⃗, a
†
k⃗
] = δ3(k⃗ − k⃗′)

[ak⃗, ak⃗′ ] = [a†
k⃗
, a†
k⃗′
] = 0

[as
k⃗′
, as

′†
k⃗′

] = δ3(k⃗ − k⃗′)δss
′

[as
k⃗
, as

′

k⃗′
] = [as†

k⃗
, as

′†
k⃗′

] = 0, (12.98)

while the classical mode functions, {ζk(τ), ζ∗k(τ)} and {hk(τ), h∗k(τ)} are linearly independent
solutions of the (Fourier transformed) equations of motion,

ζ ′′k + 2

(
z′

z

)
ζ ′k + k2ζk = 0

h′′k + 2

(
a′

a

)
h′k + k2hk = 0. (12.99)

The aim is to calculate the power spectrum of ζ and h. That means, if take the expectation
value of the ζ and h at any point in space,

⟨0|ζ̂2(x⃗, t)/ĥs2(x⃗, t)|0⟩, (12.100)

where ak⃗|0⟩ ≡ 0. This gives the integral below

∫
d3k⃗

1

(2π)3
|ζk|2 =

∫
1

(2π)3
4πk2dk|ζk|2

≡
∫
d ln k

k3

2π2
|ζk|2 (12.101)

Where we have used the fact that the physics is independent of k⃗, therefore the integral can

be evaluated in terms of k = |⃗k|. A similar calculation for the tensor perturbations can also be
done. The power spectrum is then defined as,

Pζ ≡ d⟨0|ζ̂2(η, x⃗)|0⟩
d ln k

=
k3

2π3
|ζk|2

Ph ≡
d⟨0|ĥ2ij(η, x⃗)|0⟩

d ln k
=

8k3

2π2
|hk|2, (12.102)

where ζk(η) and hk(η) are obtained by solving the equations of motion Eq 12.99 w.r.t the
following initial conditions,
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ζk → 1

2
√
2k
e−ikη

hk → 1

mpla
√
2k
e−ikη. (12.103)

The 2 z
′

z ζ
′
k and 2

(
a′

a

)
h′k act as friction terms. So if there was no friction term, the equations

of motion are the same as those of a harmonic oscillator. The equation of motions cannot be
solved exactly, but they can be solved in 2 important regimes. We previously saw that during
inflation, there are two important length scales. One was the co-moving wavelength, λc,

λc =
2π

k
(12.104)

of some perturbation. In the very early universe it was much smaller than the Hubble radius,
rH(≡ c

H ). When the universe accelerates during inflation, the Hubble radius is constant (or grows

very slowly as H = ȧ
a and ȧ increases very rapidly as ä is very large). But the wavelength (∝ a(t))

grows exponentially. The equations of motion can solved exactly in the case where λc >> rH or
λc << rH . Let’s start in the limit λc << rH . The frictional terms are very weak compared to
the harmonic terms. Therefore the equations of motion simplify to the equations of motion of an
under-damped oscillator.

A good approximation of a solution is given by defining ζ(k) = vk
z , and h(k) = wk

a , the
equations of motion simplify to

v′′k +

(
k2 − z′′

z

)
vk = 0

w′′
k +

(
k2 − a′′

a

)
wk = 0, (12.105)

in the regime when k2 >> z′′

z , therefore two equations simplify to,

v′′k + k2vk = 0

w′′
k + k2wk = 0, (12.106)

with solutions

v = A(k)±e
±ikη

w = B(k)±e
±ikη. (12.107)

So in terms of the usual field ζ and h,

ζk(η) ≈ A(k)±
z

e±ikη

hsk(η) ≈ B(k)±
z

e±ikη. (12.108)

These are not normalised. To normalise we need the Wronskians

W (ζk, ζ
†
k) ≡ ζk(η)ζ

∗
k
′(η)− ζ∗k(η)ζ

′
k(η) =

i

z2
(12.109)

W (hk, h
∗
k) ≡ hk(η)h

∗
k
′(η)− h∗k(η)h

′
k(η) =

i

(mpla)2
. (12.110)

The normalisation turns out to give,
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ζk(η) ≈ 1

z
√
2k

(A1(k)e
−ikη +A2(k)e

ikη),

hk(η) ≈ 1

(mpa)
√
2k

(B1(k)e
−ikη +B2(k)e

ikη). (12.111)

Now let’s look at the case outside the horizon. The equations of motion are even simpler in
this case as the k2 term can be ignored and therefore the friction term halts the motion of the
field very quickly. Once friction “freezes” this mode (i.e halts the motion), it remains the same for
the remaining of the universe’s lifetime and is what is observed today. So we want to calculate the
value of the mode functions at the point of horizon crossing. The horizon crossing happens when

rH =
λp
2π

=
1

H
(c ≡ 1), (12.112)

where the 2π is inserted to get the correct value. λp is the physical wavelength which is a(t)λc,

where λc is the co-moving wavelength, therefore rH = λca(t)
2π = 1

H ⇒ λc
2π = 1

a(t)H ⇒ k = aH, where

k is the co-moving wave-vector. Recall that z =
√
2ϵa, so at the moment of horizon crossing we

define z = z∗, ϵ = ϵ∗ and a = a∗, therefore at the moment of horizon crossing, we get

z∗ =
√
2ϵ∗

(
k

H

)
. (12.113)

In this case ζk becomes

ζk =
1√
2k

1√
2ϵ∗

(
H

k

)
(12.114)

where the phase term has been ignored, as only the modulus square comes into the power
spectrum (note that we are only using a positive or negative mode here, therefore there are no
interference terms). Therefore we get

Pζ(k) =

(
k

2π2

)2

≈ 1

2ϵ

(
H

2πmp

)
(12.115)

and analogously for tensor modes,

Pn(k) = 8

(
k

2π(mpa)

)2

= 8

(
H

2πmpl

)2

. (12.116)

During inflation, k is growing exponentially, while H is growing very slowly, which ultimately
means the spectrum is independent of k, also called scale-invariant (i.e we have ≈ k0). A lot of
different perturbations with different values of k cross the horizon at a given time as they are all
expanding exponentially and H is basicly constant. So each wave-number that we look at, we are
evaluating the value of the slow roll parameter ϵ and the value of H at the moment a mode with
wave-vector k crosses the horizon, but during inflation ≈ e60 are crossing the horizon, while ϵ and
H have barely had time to change at all, i.e as independent of k.
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